Lecture 9
We have a manifold CP™. Take

a homogenous polynomial. Then
1. P(A\z) = A™P(z), so if P(z) = 0 then P(Az) =0
2. Euler’s identity holds
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Lemma. The following are equivalent

1. For all z € C"*1 — {0}, dP, #0
2. For all z € C"*1 — {0}, P(2) =0, dP, # 0.

we call P non-singular if one of these holds.
If X ={[z0,-..,2n], P(z) = 0}. Note that this is a well-defined property of homogeneous polynomials.
Theorem. If P is non-singular, X s an n — 1 dimensional submanifold of CP™.

Proof. Let Uy, ...,U, be the standard atlas for CP™. It is enough to check that X N U; is a submanifold of
U;. WE’ll check this for 1 = 0.

Consider the map ~C"™ =R Up given by
Y(z1y v zn) =1, 21, .-, 2]

It is enough to show that Xy = v~1(X) is a complex n—1 dimensional submanifold of C". Let p(z1, ..., 2,) =
P(1,z1,...,2n). Xo is the set of all points such that p = 0. It is enough to show that p(z) = 0 implies
dp, # 0 (showed last time that this would then define a submanifold)
Suppose dp(z) = p(z) = 0. Then
opP

p(l,zh...,zn):O:a—%(l,zl,...,zn)zo i=1,...,n

By the Euler Identity
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O:P(l,zl,...,zn):Zziazv(l,zl,...,zn)—1—25(1,21,...,2”)
=0 ‘ ‘

So 3_2(1’ 21,--.52n) = 0, which is a contradiction because we assumed p # 0. O



Theorem (Uniqueness of Analytic Continuation). X a connected complex manifold, V. C X is an
open set , f,g€ OX). If f=g onV then f =g on all of X.

Sketch. Local version of UAC plus the following connectedness lemma O
Lemma. For p,q € X there exists open sets U;, i =1,...,n such that

1. U; is biholomorphic to a connected open subset of C™

2. pel;

3. qeU,

4. UiNUjpq # 0.

Theorem. If X is a connected complex manifold and f € O(X) then if for some p € X, |f|: X — R takes
a local maximum then f is constant.

Corollary. If X is compact and connected O(X) = C.

This implies that the Whitney embedding theorem does not hold for holomorphic manifolds.

Let X be a complex n-dimensional manifold, X a real 2n dimensional manifold. Then if p € X then T, X
is a real 2n-dimensional vector space and T, X is a complex n-dimensional vector space.

Think for the moment of 7, X as being a 2n-dimensional R-linear vector space. Define

Jp: T, X =T, X  Jyu=+—1v

Jp is R-linear map with the property that J:Z = —J. We want to find the eigenvectors. First take T, ® C
and extend J, to this by
Jp(v®@c)=Jpu®c
Now, J, is C-linear, J, : T, ® C — T}, ® C. Also, we can introduce a complex conjugation operator
T, C—-T,C VRC—UVRC

We can split the tangent space by
T,C=T,"oT)"

where v € Tpl’O if J,v=++v/—-1lvandv € Tpo’1 if Jpv = —v/—1v. i.e. we break T, ® C into eigenspaces.

Ifve TpL0 iff v € Tz?’l and so the dimension of the two parts of the tangent spaces are equal.

We can also take T ® C = (T;)"0 @ (T;)*" and [ € (T;)"? if and only if Jil = /=11, 1 € (T;)"" if
Jol = —v/—1l.

Check that [ € (T;)LO if and only if [ : T, — C is actually C-linear. To do this J*I = /—1{ implies
Jyl(v) = [(Jpv) = v —1l(v) which implies that [ is C-linear.

Corollary. U is open in X andp € U. Then if f € O(U then df, € (T;)LO.

Corollary. (U, z1,...,2n) a coordinate patch then (dz1)p, .. ., (dzn)y is a basis of (T;)"0 and (dz1)p, ..., (dzn)y
is a basis of (T;;)".

From the splitting above we get a splitting of the exterior product

MTIyeC) = @ AT C)
l+m=k

for vy, ..., v, a basis of Ty @ C then
w € A“"(T; RC)ew= ZCI,JV] ANUj
We also get a splitting in the tangent bundle

MT*eC) = @ A(T*®C)
I+m=k



since QF(X) is sections of A¥(T* ® C). Then

)= @ AX)

l+m=k

Locally when (U, 21,. .., z,) is a coordinate patch, w € Q™ (U) iff

w= Za[,JdZ[ ANdzZy

so we've extended the Dolbeault complex to arbitrary manifolds.



