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Lecture 20 

C∞(Ek+1X a compact manifold, Ek → X , k = 1, . . . , N complex vector bundles, D : C∞(Ek) → ) first 
order differential operator. Consider the following complex, hereafter referred to as (∗). 

. . . �� C∞(Ek ) 
D �� C∞(Ek+1) 

D �� . . . 

is a differential complex if D2 = DD = 0.(∗) 
For x ∈ X , ξ ∈ T ∗, we have σξ : E

k Ek+1 then we have the symbol σξ (D)(x, ξ). Andx xx → 

0 = σ(D2)(x, ξ) = σ(D)(x, ξ)σ(D)(x, ξ) 

so we conclude that σ2 = 0. So at every point we get a finite dimensional complexξ 

σξ σξ 

0 �� E1 �� E2 �� . . . 
x x 

the symbol complex 

Definition. (∗) is elliptic if the symbol complex is exact for all x and ξ ∈ T ∗
x − {0}. 

Examples 

(a) The De Rham complex. For this complex the bundle is


Ek : Λk ⊗ C = Λk (T ∗X) ⊗ C


then C∞(Ek ) = Ωk (X). The first order operation is the usual exterior derivative d : C∞(Ek) →

C∞(Ek+1). σξ = σ(d)(x, ξ), where σξ : Λ

k (Tx 
∗) ⊗ C → Λk+1(Tx 

∗) ⊗ C


Theorem. For µ ∈ Λk(Tx 
∗) ⊗ C, σξ µ = 

√
−1ξ ∧ µ.


Proof. ω ∈ Ωk (X), ωx = µ, f ∈ C∞(X), dfx = ξ then


(e−itf de if tω)x = (idf ∧ ω)x + (dω)x = (iξx ∧ µ)t+ (dω)x


Theorem. The de Rham complex is elliptic 

Proof. To do this we have to prove the exactness of the symbol complex: 

“ “. . . �� Λk(Tx 
∗) 

∧ξ” �� Λk+1(T ∗ ∧ξ” �� . . . 
x ) 

To do this let e1, . . . , en be a basis of T ∗ with e1 = ξ. Then for µ ∈ Λk(Tx 
∗), µ = e1 ∧ α + β where αx


and β are products just involving e2, . . . , en (this is not hard to prove).
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(b) Let X be complex and let us define a vector bundle


Ω0,k(X)
Ek = Λ0,k(T ∗) C∞(Ek ) =


Take D = ∂. This is a first order DO,


∂ : C∞(Ek ) → C∞(Ek+1), σxi = σ(D)(x, ξ), now what is this 
symbol? 

Take ξ ∈ T ∗, then ξ = ξ1,0 + ξ0,1 where ξ1,0 ∈ (T astx)
1,0 , ξ0,1 ∈ (Tx 

∗)0,1 and ξ1,0 = ξ 
0,1 

, ξ = 0 thenx 
ξ0,1 

�
= 0. 

Theorem. For µ ∈ Λ0,ki(Tx 
∗), σξ (µ) = 

√
−1ξ0,1 ∧ µ. 

Proof. ω ∈ Ω0,k(X), ωx = µ, f ∈ C∞(X), dfx = ξ then


(e−itf ∂e itf ω)x = (it∂f ∧ ω)xt + (∂ω)x = itξ0,1 ∧ µ + ∂ωx


Check: For ξ = 0 the sequence 

“∧ξ0,1” . . . �� Λ0,k(Tx 
∗) 

“∧ξ0,1

��” Λ0,k+1(Tx 
∗) �� . . . 

is exact. This is basically the same as the earlier proof, when we note that Λ0,k(Tx 
∗) = Λk((Tx 

∗)0,1). we 
conclude that the Dolbeault complex is elliptic. 

(c) The above argument forks for higher dimensional Dolbeault complexes. If we set


Ωp,k(X)
Ek = Λp,k(T ∗X), D = ∂, C∞(Ek ) =


it is easy to show that σ(∂)(x, ξ) = “ ∧ ξ0,1”


The Hodge Theorem 

Given a general elliptic complex 

. . . D �� C∞(Ek ) 
D �� C∞(Ek+1) 

D �� . . . 

with dx a volume form on X , equip each vector bundle Ek with a Hermitian structure. We then get an L2 

inner product , L2 on C∞(Ek ). And for each D : C∞(Ek ) → C∞(Ek+1) we get a transpose operator 

Dt : C∞(Ek+1 C∞(Ek )) →

If for x ∈ X , ξ ∈ Tx 
∗, σξ = σ(D)(x, ξ) then 

σ(Dt)(x, ξ) = σt x 



So we can get a complex in the other direction, call it (∗)t 

Dt Dt 

. . . �� C∞(Ek ) 
Dt 

�� C∞(Ek−1) �� . . . 

and since 0 = (Dr )t = (DD)t = DtDt = (Dt)2 we have that (∗)t is a differential complex. 
Also, σ(Dt)(x, ξ) = σξ = σ(D)(x, ξ)t . For x and ξ ∈ T ∗ − {0} the symbol complex of Dt isx 

σt σt 
ξ 

0 �� EN ξ �� EN −1 �� . . . 
x x 

The transpose of the symbol complex for D. So (∗) elliptic implies that (∗)t is elliptic. 

Definition. The harmonic space for (∗) is 

k = s ∈ C∞(Ek ), Ds = s = 0}H { Dt 

Theorem (Hodge Decomposition Theorem). We have two propositions 

(a) For all k, Hk is finite dimensional. 

(b) Every element u of C∞(Ek ) can be written uniquely as a sum u1 + u2 + u3 where u1 ∈ Im(D), 
ku2 ∈ Im(Dt), u3 ∈ H


Before we prove this we’ll do a little preliminary work. Let


N

E = 
� 

Ek 

k=1 

Then consider the operator 
D + Dt : C∞(E) → C∞(E) 

Check: This is elliptic. 

Proof. Consider Q = (D + Dt)2 . It suffices to show that Q is elliptic. 

Q = D2 + DDt + DtD + (Dt)2 

but the two end terms are 0. So 
Q = DDt + DtD 

Note that Q sends C∞(Ek ) to C∞(Ek ), so Q behaves nicer than D + Dt . So now we want to show that Q 
is elliptic. 

Let x, ξ ∈ Tx 
∗ . Then− {0}

σ(Q)(x, ξ) = σ(DDt)(x, ξ) + σ(DtD)(x, ξ) = σt ξξ + σξ σ
t 

x ξ 

(where σξ = σ(D)(x, ξ). 

Suppose v ∈ Ek and σ(Q)(x, ξ)v = 0 (i.e. it fails to be bijective). Thenx 

((σξ
t σξ + σξ σξ

t )v, v) = 0 = (σξ v, σξ v)x + (σξ
t v, σξ

t v) = 0 

which implies that σξ v = 0 and σξ
t v = 0. Now σξ = 0 implies that v ∈ Im σξ : E

k−1 Ek by exactness. Wex → x 

know that Im σξ ⊥ ker σξ
t , but v ∈ ker σξ

t , so v⊥v implies that v = 0. 

So Q is elliptic and thus (D + Dt) is elliptic. 

Lemma. Hk = ker Q. 
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Proof. We want to show Hk ⊆ ker Q. The other direction is easy. Let u ∈ ker Q. Then 

�DDt u + DtDu, u = 0 = Dtu, Dt u + Du, Du = 0 

kThis implies that Dtu = Du = 0, so .u ∈ H

Proof of Hodge Decomposition. By the Fredholm theorem every element u ∈ C∞(Ek ) is of the form u = 
v1 + v2 where v1 ∈ Im(Q) and v2 ∈ ker Q. v2 ∈ ker Q implies that v2 ∈ Hk , v1 ∈ Im Q implies that 
v1 = Qw = D(Dtw) + Dt(Dw). Choose u1 = DDtw, u2 = DtDw and v2 = u3. 

Left as an exercise: Check that u = u1 +u2 +u3 is unique. Hint: ker D⊥ Im Dt and ker Dt⊥ Im D. Then 
the space Im(D), Im(Dt) and H are all mutually perpendicular. 


