Lecture 25

Symplectic Hodge Theory

(X2" w) be a compact symplectic manifold. From x € X we get w, — B, a non-degenerate bilinear form
on T, and so induces a non-degenerate bilinear from on AP(T}).
Define (,)r2 on QP as follows. Také Q = w™/n!, a symplectic volume form, a, 8 € QP

(@, B) :ABf(aaﬁ)Q:/){aA*ﬁ
Remarks:
(a) In symplectic geometry x? = id, * = 1.
(b) (,) is anti-symmetric on QP, p odd and symmetric on P, p even.
(c) [L', 6] =dt =4. And 6" = (d')! = —d, so [d, L*] = 6.

Consider the Laplace operator dd + éd = dd' + d'd. Now, in the symplectic world, A = 0. We’ll prove
this: § = [d, L] = dL* — L'd, so d6 = —dL'd and §d = dL'd, so A = 0.

So for symplectic geometry we work with the bicomplex (€2, d, §). We're going to use symplectic geometry
to prove the Hard Lefshetz theorem for Kaehler manifolds.

Let (X?",w) be a compact Kaehler manifold. Then we have the following operation in cohomology

v: HP(X,C) — HPT?(X) c— [w]—c
Theorem (Hard Lefshetz). +? is bijective.

Question: Is Hard Lefshetz true for compact symplectic manifolds. If not, when is it true.
Define [L*, L] = A, by Kaehler-Weil says that Aa = (n — p)a.

Lemma. [A, L'] =2L".
Proof. AL'a — L'Aa= (n— (p—2))L'a — (n —p)L'a =2L'a
Lemma. [A, L] = —2L.

There is another place in the world where you encounter these: Lie Groups.

Lie Groups

Take G = SL(2,R), then consider the lie algebra g = sl(2,R).
This is the algebra {A € Ma3(R),tr A = 0}. Generated by

(9 -6 6

Check that [X,Y] = H, [H,X] = 2X and [H,Y] = -2Y, and si(2,R) = span{X,Y, Z}, and the above
describes the Lie Algebra structure.

p:g— End(Q) be given by X — L' Y +— L and H — A is a representation of the Lie algebra g on €.
So Q is a g-module.

Lemma. Qpqrm s a g-module of Q2.

Proof. First note that Ld = dL, i.e. dLa = d(w A @) = w A da = Lda. Taking transposes we get L'§ = 6L*.
Then take & € Qpgrm. We already know that [d, Lt] = §, so dLt«a— Ltdoe = o, which implies that dLta = 0.

Similarly dLo, Lo = 0, so Lo, Lia are in Qp,47m.
So since A = [L, L], Ao € Qparm and € is a g-module. O



Note that Qp4rm is not finite dimensional. So these representations are not necessarily easy to deal with.
Definition. Let V be a g-module. V is of finite H-type if

N
V=P
=1

and H = \;Id on V.
In other words, H is in diagonal form with respect to this decomposition.

Example. Q= @>" O, H = (n — p)Id on QF and Qparm = D" QO  H = (n—p)ld on OF
p=0 p=0

harm> harm*
Theorem. IfV is a g-module of finite type, then every sub and quotient module is of finite type.
Proof. V = @f\il Vi, H=XIdon V;. Let m; : V— V; be a projection onto V;. Check that
1
T, = (H - A )
[T = Aj) ]1;{ !

ie., mv = v on v;. So m; takes sub/quotient objects onto themselves.



