Lecture 29

We now extend *,., *g,.J, L, L', C-linearly to A* ® C. And extend B,, By to C-linear forms on A* @ C.

We can now take A'®@C = AL@ A%, where as usual the two elements of the splitting are the eigenspaces
of the J operator.

If we now let ey, fi1,...,en, fn be a Kaehlerian Darboux basis of V' and set

1
U; = 2— Tl(el —V 71f1)
then u1,...,u, is an orthonormal basis of A? with respect to the Hermitian form (u,v) = B,(u,?) and
@1,...,Up is an orthonormal basis of A%

We know from earlier that * gives rise to a splitting
NeoCc= P A
pta=Fk

and if I and J are multi-indices of length p and ¢, then the uy A % forms form an orthonormal basis of AP+
with respect to the Riemannian bilinear form («, 8) = B, («, 8).
In particular A* ® C = @p +q AP+4 is an orthonormal decomposition of A* ® C with respect to the inner

product (a, 3) = B,(a, 3).
In terms of u1,...,u, € AY?, the symplectic form is

Zui Ad; € Ab!

w

1

= m
Consequences:

(a) L:AP? — APHLaHL o AP

(b) J = (v/—1)P"9Id on AP,

(c) The star operators behave nicely, x4 : AP — A"~Pn—4,

d) #p: APT — A"TPT s = .

(e) Lt: AP9 — AP=L471 hecause Lt = %, Lx,.

So all the operators behave well as far as bi-degrees are concerned.

5.0.4 Kaehlerian Hodge Theory

Let (X2",w) be a compact Kaehler manifold, with w € Q! a Kaehler form.

From the complex structure we get a mapping Jp, : Ak(T;) ®C — AF (T;) ® C. This induces a mapping
J: QF(X) — QF(X) by defining (Ja), = Jpa, and we have as before the *-operators, #,, x5 : QF(X) —
Q2" related by #, = %, @ J.

We also have (, )., (,)s bilinear forms on Q¥ defined by

<a,ﬂ>T:/XaA*TB <a,ﬂs:/XaA*sﬂ

L:QF — QF2 s given by a — w A a and L' = ,L*s = %, 1 L*,, the transpose of L with respect to (),
and {(,)s.

Finally, we have d : QF — Q**1 and its transpose § = §,. the transpose w.r.t. (,), and d, the transpose
w.r.t. {,)s.

On QF 5, = (=1)F %1 d, and §, = (—1)F *, d*,. But from %, = *, 0 J we get

S = (—D)FT s d s 00 = T 16,0



We proved a little while ago that d = [§,, L]. What happens upon conjugation by J?
JdJ = [J ], L] = [0, L]

We make the following definition

Definition. d¢ = JdJ !

So now we have

de = 1[4, L]
Theorem. d and dc anti-commute
We'll prove this later. But for now, we’ll prove an important corollary
Corollary. Let A =dd + éd. Then L and L' commute with A

Proof. [dd, L] = [d, L]6 + d[¢, L], and we showed before that [d, L] = 0 and d[0, L] = ddc. Similarly [0d, L] =
ded, so [A, L] =0.
L! is the Riemannian transpose of L, and in this setting A = A, so [A, L] = 0.

We will now use the above to prove Hard Lefshetz
Takef

H=PH  H =ked:QF -0
k

By the results above H is invariant under L, L' and A = [L,L!]. So ‘H is a finite-dimensional SL(2,R)
module.

We prove for SL(2,R) modules that L* : H"~* — H"** is bijective.

In the Kaehler case we get the following diagram

Ly,

Hn—k Hn+k

-] k |-

n— 2 n
HDRk(X) > HDEk(X)

where y*c = [WF] A c.
Unlike the diagram in the symplectic case, in this case the vertical arrows are bijections. So v¥ is bijective,
which is strong Lefshetz.



