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Lecture 29 
We now extend ∗r, ∗s, J, L, Lt , C-linearly to Λ∗ ⊗ C. And extend Br , Bs to C-linear forms on Λk ⊗ C. 

We can now take Λ1⊗C = Λ1,0⊕Λ0,1, where as usual the two elements of the splitting are the eigenspaces 
of the J operator. 

If we now let e1, f1, . . . , en, fn be a Kaehlerian Darboux basis of V and set 

1 
ui = 

2
√
−1

(ei −
√
−1fi) 

then u1, . . . , un is an orthonormal basis of Λ1,0 with respect to the Hermitian form (u, v) = Br(u, v̄) and 
¯ uu1, . . . , ¯n is an orthonormal basis of Λ0,1 . 

We know from earlier that ∗ gives rise to a splitting 

Λp,q Λk ⊗ C = 
� 

p+q=k 

and if I and J are multi-indices of length p and q, then the uI ∧ ūJ forms form an orthonormal basis of Λp,q 

¯with respect to the Riemannian bilinear form (α, β) = Br(α, β). 
In particular Λk ⊗C = 

�
Λp+q is an orthonormal decomposition of Λk ⊗C with respect to the inner p+q 

¯product (α, β) = Br (α, β). 
In terms of u1, . . . , un ∈ Λ1,0, the symplectic form is 

1 
¯ω =

2
√
−1 

� 
ui ∧ ui ∈ Λ1,1 

Consequences: 

(a) L : Λp,q → Λp+1,q+1 , α ∈ Λp,q 

(b) J = (
√
−1)p−q Id on Λp,q. 

Λn−p,n−q(c) The star operators behave nicely, ∗s : Λ
p,q .→ 

Λn−p,n−q(d) ∗r : Λ
p,q = ∗sJ .→ , ∗r 

(e) Lt : Λp,q Λp−1,q−1 because Lt = L∗s.
→ ∗s


So all the operators behave well as far as bi-degrees are concerned. 

5.0.4 Kaehlerian Hodge Theory 

Let (X2n, ω) be a compact Kaehler manifold, with ω ∈ Ω1,1 a Kaehler form. 
From the complex structure we get a mapping Jp : Λ

k (Tp
∗) ⊗ C → Λk (Tp

∗) ⊗ C. This induces a mapping 

J : Ωk (X) → Ωk(X) by defining (Jα)p = Jpαp and we have as before the ∗-operators, ∗r, ∗s : Ω
k(X) →

Ω2n−k related by ∗r = ∗s ⊗ J . 
We also have , r , , s bilinear forms on Ωk defined by 

¯α, β r = β α, βS = β〈 〉
X 
α ∧ ∗r 〈

X 
α ∧ ∗s

L : Ωk → Ωk+2 is given by α 7→ ω ∧ α and Lt = = ∗−1L∗r, the transpose of L with respect to 〈, 〉rr 
and , s. 

∗sL∗s 

Finally, we have d : Ωk → Ωk+1 and its transpose δ = δr the transpose w.r.t. 〈, 〉r and δs the transpose 
w.r.t. , s. 

On Ωk , δr = (−1)k ∗−1 d∗r and δs = (−1)k d∗s. But from ∗r = J we get r ∗s ∗s ◦

δr = (−1)kJ−1 ∗−1 d ∗s J = J−1δsJs ◦



We proved a little while ago that d = [δs, L]. What happens upon conjugation by J? 

JdJ−1 = [J−1δsJ, L] = [δ, L] 

We make the following definition 

Definition. dC = JdJ−1 

So now we have

dC = [δ, L]


Theorem. d and dC anti-commute 

We’ll prove this later. But for now, we’ll prove an important corollary 

Corollary. Let Δ = dδ + δd. Then L and Lt commute with Δ 

Proof. [dδ, L] = [d, L]δ + d[δ, L], and we showed before that [d, L] = 0 and d[δ, L] = ddC. Similarly [δd, L] = 
dCd, so [Δ, L] = 0. 

Lt is the Riemannian transpose of L, and in this setting Δt = Δ, so [Δ, Lt] = 0. 

We will now use the above to prove Hard Lefshetz 
Takef 

k kH = 
� 

H H = ker Δ : Ωk Ωk →
k 

By the results above H is invariant under L, Lt and A = [L, Lt]. So H is a finite-dimensional SL(2, R) 
module. 

We prove for SL(2, R) modules that Lk : Hn−k → Hn+k is bijective. 
In the Kaehler case we get the following diagram 

Lk �� n+kHn−k H
= =∼ ∼
��

γk ��
Hn−k 
DR (X) �� Hn+k 

DR (X) 

where γkc = [ωk] ∧ c. 
Unlike the diagram in the symplectic case, in this case the vertical arrows are bijections. So γk is bijective, 

which is strong Lefshetz. 


