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Chapter 1

Several Complex Variables

Lecture 1

Lectures with Victor Guillemin, Texts:
Hormander: Complex Analysis in Several Variables
Griffiths: Principles in Algebraic Geometry
Notes on Elliptic Operators
No exams, 5 or 6 HW’s.
Syllabus (5 segments to course, 6-8 lectures each)

1. Complex variable theory on open subsets of C". Hartog, simply pseudoconvex domains, inhomogeneous

C.R.
Theory of complex manifolds, Kaehler manifolds
Basic theorems about elliptic operators, pseudo-differential operators

Hodge Theory on Kaehler manifolds

ol N

Geometry Invariant Theory.

1 Complex Variable and Holomorphic Functions

U an open set in R™, let C°>°(U) denote the C* function on U. Another notation for continuous function:
Let A be any subset of R, f € C*°(A) if and ounly f € C*°(U) with U D A, U open. That is, f is C*° on
A if it can be extended to an open set around it.

As usual, we will identify C with R? by z ~ (x,y) when z = x +iy. On R? the standard de Rham
differentials are dz, dy. On C we introduce the de Rham differentials

dz = dx + idy dz =dx —idy
Let U be open in C, f € C*°(U) then the differential is given as follows

of of of (dz+dz>+g(dz—dz>

adJra_d*aa: 2 Ay 2i

of .of / /
=5 (5 7o) =+ 3 (5 +igy )

If we make the following deﬁnitions, the differential has a succinct form
OF _1(01 05\ or_L(of of
0z ox 5‘y 0z oz 8y

df = 8fd +¥d-

We take this to be the definition of the differentlal operator.

df =

SO
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Definition. f € O(U) (the holomorphic functions) iff 9f/0z = 0. So if f € O(U) then df = %dz.
Examples
1. z€ O(U)

2. f,g € C>®(U) then

f af

2:/9= +f—
so if f,g € O(U) then fg € O(U).

2

3. By the above two, we can say z, z,... and any polynomial in z is in O(U).

4. Consider a formal power series f(z) ~ Y o, a;z" where |a;| < (const)R™*. Then if D = {|z| < R}

the power series converges uniformly on any compact set in D, so f € C(D). And by term-by-term
differentiation we see that the differentiated power series converges, so f € C*°(D), and the differential
w/ respect to Z goes to 0, so f € O(D).

5. a€C, f(z) = 7= (€ —{a}).

Cauchy Integral Formula

Let U be an open bounded set in C, OU is smooth, f € C=(U). Let u = fdz by Stokes

fdz:/du du afd Adz Jra—fd Adz
ou U 0z 0z

fdz-/du—/—dz/\dz
oUu

Now, take a € U and remove D, = {|z — a| < €}, and let the resulting region be U, = U — D.. Replace
f in the above by —. Note that (z — a)~! is holomorphic. We get

/ Ldz:/ 5‘_{ 1 dz Ndz
oU. 2 —a v. 92z —a

Note: The boundary of U is oriented counter-clockwise, and the inner boundary D is oriented clockwise.
When orientations are taken into account the above becomes

/ S g f(z)dz:/ OF Y 4snas (1.1)
o U,

UZ—a oD, 2 — @ _0zZz—a

SO

The second integral, with the change of coordinates z = a + ee?, dz = iee®?, dea = idf. This gives

/ FE) .y 2ﬂf(a+ei9)d9.
4]

D. %@ 0

Now we look at what happens when ¢ — 0. Well, ﬁ € LY(U), so by Lebesgue dominated convergence if

we let U, — U, and the integral remians unchanged. On the left hand side we get —if(a)2w, and altogether
we have

2mif(a) = / dz—i—/Ugf ! dzNdz

UZ—a Zz—a

In particular, if f € O(U) then

2m’f(a)—/a L

Ur—a

Applications:



feCc=U)NOU), take a ~ z, z ~ 1 then just rewriting

o,

ou 'l — =%

2mif(z) =

If welet U ={D :|z| < R}. Then

>k

1 1 1
- L=l

n-z n(l—%) n e

and since on boundary |n| = R, |z| < R so the series converges uniformly on compact sets, we get

JIRLLYIED SO (R 7

k=0 Inl=R "

or ap = % B—Zkkf(O) This is the holomorphic Taylor expansion.

9
Now if we take z ~ 2z —a, D : |z —a| < R, f € O(U) N C*(U) then

k
A=Yt -af  ay= o)

We can apply this a prove a few theorems.

Theorem. U a connected open set in C. f,g € O(U), suppose there exists an open subset V of U on which
f=g. We can conclude f = g, this is unique analytic continuation.

Proof. W set of all points a € U where

oFf kg
w(@):w k::O,l,
holds. Then W is closed, and we see that W is also open, so W = U. O

Lecture 2

Cauchy integral formula again. U an open bounded set in C, QU smooth, f € C=(U), z € U

LI (VWS B o P

f(z):2m' ouN—=% T o von'n—=z

dn A dn

the second term becomes 0 when f is holomorphic, i.e. the area integral vanishes, and we get

flo = o [ T

270 Joum—2

Now take D : |z —a| < ¢, f € O(D) N C>(D), then

1 2w

f(a) fla+eci®)df

=5 ;
More applications:

Theorem (Maximum Modulus Principle). U any open connected set in C, f € O(U) then if |f| has a
local mazimum value at some point a € U then f has to be constant.

First, a little lemma.



Lemma. If f € O(U) and Ref =0, then f is constant.

Proof. Trivial consequence of the definition of holomorphic. O
Proof of Mazimum Modulus Principle. Assume f(a) is positive (we can do this by a trivial normalization
operation). Let u(z) = Re f. Now from above

1 2m

f(a) fla+ec)do

:%0

The LHS is real valued and trivially

we subtract the above 2 and we get

27
0= (a) — u(a + ee®)db.
0

When e is sufficiently small, since a is a local maximum, the integral is greater than 0, f(a) = u(a + e*) so
Re f is constant in a neighborhood of a and we can normalize and assume Re f = 0 near a, so by analytic
continuation f is constant on U.

Inhomogeneous CR Equation

Consider U an open bounded subset of C, U a smooth boundary, g € C*°(U). The Inhomogeneous CR
equation is the following PDE: find f € C°°(U) such that
of
0z
The question is, does there exists a solution for arbitrary g7

First, consider another, simpler version of CR with g € C§°(C). Does there exists f € C°°(C) such that
af/0z = g?

Lemma. We claim the function f defined by the integral

1) =55 [ 2% n g

g

is in C*°(C) and satisfies 0f 0z = g.
Proof. Perform the change of variables w = z — n, dw = —dn, dw = —dij and 7 = z — w then the integral

above becomes
,/de Adio = f(2)
w

Now it is clear that f € C>°(C), because if we take 9/0z, we can just keep differentiating under the integral.

And now
dg 9g
1 7z ) (2 —w) 1 50 ) (1)
—6f:——_/7(6 ) dw/\dw:—_/i(a?7> dn A dn
0z 2mi w 2mi n—=z

Let A = supp g, so A is compact, then there exists U open and bounded such that OU is smooth and A C U.
For g € C°°(U) write down using the Cauchy integral formula

1 1 0 dn A dn
L[ s, 1 g dnn
2mi Jou n—2 27t Jy On n—z

On 90U, g is identically 0, so the first integral is 0. For the second integral we replace A by the entire complex
plane, so

9(z) =

() = g [ 0y D00
IE) = omi Caﬁ" n—z

which is the expression for % O
z



Now, _we want to get rid of our compactly supported criterion. Let U be bounded, OU smooth and
g€ C>(U), % =g.
Make the following definition
1 g _
f(z) = 2—/ ﬂdﬂ/\dﬂ
™ Jyn—=z
Take a € U, D an open disk about a, D C U. Check that f € C* on D and that 9f/0Z = g on D. Since a
is arbitrary, if we can prove this we are done. Take p € C5°(U) so that p = 1 on a neighborhood of D, then
L [prMmgn o1 9(n _
f(z) = —/Mdn/\dvﬁ — [ —p)n(—)dnAdn

- 2mi n—z 2mi 2

I II

The first term, I, is in C§°(C), so I is C* on C and 01/0Z = pg on C and so is equal to g|p. We claim that
II|p is in O(D). The Integrand is 0 on an open set containing D, so d11/9zZ =0 on D.

We conclude that 0f(z)/0zZ = g(z) on D. (The same result could have just been obtained by taking a
partition of unity)

Transition to Several Complex Variables

We are now dealing with C", coordinatized by z = (z1,..., 2n), and z; =z} + ty and dzy, = dxg + idyg.
Given U open in C", f € C*°(U) we define

(ALY b (0 0

0z, B 5 a—l'k _Zﬁ—yk 0z, o § Oz, Zayk
So the de Rham differential is defined by
_ of . Oy .\ _ Of of .. _ 5
de(axidazlJrayidyl) azkdszrZazkdzk = 0f +0f
sodf =0f + 0f.

Let Q1(U) be the space of C*° de Rham 1-forms, and u € Q'(U) then
w=u'+u" = aidz+ Y bidz  ai,b € C®(U)
we introduce the following notation
ot = {Z ardzi, ap € C‘X’(U)}
Q01 — {Z bz, b € C"’O(U)}

and therefore there is a decomposition Q'(U) = QV(U) @ Q%' (U). We can rephrase a couple of the lines
above in the following way: df = 0f + 0f, 0f € QL0 9f € Q0L

Definition. f € O(U) if df = 0, i.e. if 9f /02, = 0, Vk.

Lemma. For f,g € C®(U), dfg = f0g + gOf, thus fg € O(U).

Obviously, z1,...,2, € O(U).
If = (ag,...,an), a; €N, then 2% = 27 ... 2% and 2* € O(C). Then

p(z) = Z asz® € O(C™)
ol <N

Even more generally, suppose we have the formal power series
flz) = Z aa2®
«@

and |aq| < CRy ™ ...R; . Then let Dy : |2x| < Ry and D = Dy x --- x D,, then f(z) converges on D and
uniformly on compact sets in D, and by differentiation we see that f € O(D).

Definition. Let D; : |z — a;| < R,, then open set Dy X --- x D, is called a polydisk.



Lecture 3
Generalizations of the Cauchy Integral Formula

There are many, many ways to generalize this, but we will start with the most obvious

Theorem. Let D C C" be the polydisk D = Dy x --- x D, where D; : |z;| < R; and let f € O(D)NC>(D)
then for any point a = (ai,...,ay)

1\" [z, 2n)
a)=|— dzi N+ Ndzp,
f(a) <27m) /8D1><---><8Dn (z1—a1)...(zn —an) 1

Proof. We will prove by induction, but only for the case n = 2, the rest follow easily. We do the Cauchy
Integral formula in each variable separately

1 f(z1,22) 1 / f(z1,22)
= — —d n) = — ———=d
f(e1, a2) 21 Jop, 22 — 22 . f(ar,z) 2mi Jop, (21 —a1) =
Then just plug the first into the second. O

Applications: First make the following changes a; ~> z;, z; ~» 1;, then

1" f(n)
fz,...,zn< ) / dny A -+ Adnp,
( ! ) 21 OD1x---xdDy, (771 _Zl)---<nn_zn) n "

As before in the single variable case we make the following replacements

1 1 1 1 2%
11 — z) _nl...nnnlf% _nl...nn;na

for n € D1 X --- x dD,, we have uniform converge for z on compact subsets of D. So by the Lebesgue
dominated convergence theorem

a 1\" f(n)
f(@:?claz aa:(%> /del/\"'/\dnn
Theorem. U open in C", f € O(U), a € U and D a polydisk centered at a with D C U then on D we have

flz)= Z an(z1 —a1)® ... (zn — ap)™

(we will call this (%) from now on)
Proof. Apply the previous little theorem to f(z — a). O
Note we can check by differentiation that the coefficients are aq = 59f/02%(a).

Theorem. U is a connected open set in C"™ with f,g € O(U). If f = g on an open subset V.C U then f =g
on all of U.

Proof. As in one dimension. O

Theorem (Maximum Modulus Principle). U is a connected open set in C", f € O(U). If |f| achieves
a local maximum at some point a € U then f is constant

Proof. Left as exercise. O

As a reminder:



Theorem. Let g € C3°(C) then if f is the function
1 9(n _
1) = 5 [ 2y nag
i Joen— 2z
then f € C*(C) and 0f/0z = g.
What about the n-dimensional case? That is, given h; € C§°(C"), i = 1,...,n does there exist f €
C*°(C™) such that g—gi =hy,i=1,...,n7
There clearly can’t always be a solution because we have the integrability conditions
Oh;  0Oh;
GZJ' a 07;
Theorem (Multidimensional Inhomogeneous CR equation). If the h;’s satisfy these integrability
conditions then there exists an f € C°°(C"™) with 0f/0Z; = h;. And in fact such a solution is given by

1 [h o
f(zl,~-.,2n):__/ 1(’,’17227 ,Z)
2mi Jo o (m—21)

Proof. This just says for get about everything except the first variable.
Clearly f € C°°(C") and 0f/0z1 = h1. Now 0f/0z; we compute under the integral sign and we get

d771 A d7_]1

821:}741(771,22, e zn)m — e L'(m)
(so it is legitimate to differentiate under the integral sign). Now
of 1 ohy dm N din
8_21-:% T@(nl’ZQ""’Z")W
1 Oh; dm A dimy
=5 a—m(nl,zg, .. ,Zn)ﬁ
=hj(#1,...,%n)
The second set is by integrability conditions, and the lat is by the previous lemma. QED. o

Let K € C™ be a compact st. Suppose C"™ — K is connected. Suppose h; € C§°(C™) are supported in K.

Theorem. If f is the function (x) then supp f C K (unique to higher dimension). So not only do we have
a solution to the ICR eqn, it is compactly supported.

Proof. By (x) f(z1,-..,2,) is identically 0 when (z;) > 0, i > 1, because h; is compactly supported. Also,
since supp h; € K and 0f/0%; = h; we have that 9f/0z; = 0on C" — K, so f € O(C" — K). The uniqueness
of analytic continuation we have f =0 on C" — K (used that C™ — K is connected) O

Theorem (Hartog’s Theorem). Let K € U, U C C" is open and connected. Suppose that U — K
is connected. Let f € O(U — K) then f extends holomorphically to all of U. THIS IS A PROPERTY
SPECIFIC TO HIGHER DIMENSIONAL SPACES.

Proof. Let K1 € U so that K C Int K7, U — K is connected. Choose ¢ € C°°(C™) such that ¢ =1 on K

and supp ¢ C Int K;. Let
v 1-¢)f onU-—-K
10 on K
then v € C°(U). Andv=fonU—-K. h; = %v, i=1,...,n. One U — Ky, v=f € OU — Kj) so
h; = a%if on U — K1 and f is holomorphic, so this is 0, thus h; € C§°(C™), supp h; C K7 and g};; = g—g,
so Jw € C§°(C™) such that % = h; and suppw C K;. Takeg=v—-wsow =00on C" — K, v = f on
C" — K1,s0 g= f on C" — K and by construction

dg  Ov _8w_hl_iw_0

0z; o 0z; 0z; o 0%; B
sog€OU)and g=fonU-—Ky, fe C®U—K), since U — K connected, by uniqueness of analytic
continuation g = f on U — K, so ¢ is holomorphic continuation of f onto all of U. O



Lecture 4

Applying Hartog’s Theorem

Let X C C™ be an algebraic variety, code X = 2. And suppose f € O(C" — X). Then f extends holomor-
phically to f € O(C™).

Sketch of Proof: Cut X by a complex plane (P = C?) transversally. Then f |p€ O(P — {p}) so by
hartog, f |p€ O(P). Do this argument for all points, so f has to be holomorphic on f € O(C").

We have to be a little more careful to actually prove it, but this is just an example of how algebraic
geometers use this.

Dolbeault Complex and the ICR Equation
Let U be an open subset of C", w € Q(U), then we discussed how Q' (U) = Q10 ¢ Q01

There is a similar story for higher degree forms.
Taker > 1, p+qg=r. Then w € QP9(U) if w is in the following form

w = Zf],.]dzl Ndzy  frg € C*(U)

and dzy = dz;; A -+ Ndz;,, dzy; = dz; A --- ANdzj, are standard multi-indices. Then
o= o
p+q=r

Now suppose we have w € QP9(U), w = fr.ydzr A dZ; then the de Rham differential is written as follows

fI.]

dw =" "dfr; Ndzr Ndzy = o dzl/\dzj/\dZJ+Za dz; Ndzp A dzy

The first term we define to be dw and the second to be dw,i.c.

0
ow = fI’szi ANdzr Ndzy
5‘21-
- 0
Ow = ff’szj/\dzI/\dzJ
8zj

Now we may write dw = dw + 0w, and note that dw € QPT1H4(U) and dw € QP9TH(U).
Also

d2:0:82w+85w+%w+52w

and the terms in the above expression are of bidegree

r+2,9)+(+Lg+)+(@+1q+11(p,qg+2)

00 =8%=0and 99 4+ 00 =0, so 9,0 are anti-commutative.

We now have that the de Rham complex (Q*(U),d) is a bicomplex, i.e. d splits into two different
coboundary operators that anticommute.

The rows of the bicomplex are given by

%) %)

004 ObLa 024

and the columns are given by
0 —2>qp1 2> gp2 2

For the moment, we focus on the columns, more specifically the extreme left column.

10



Definition. The Dolbeault Complex is the following complex

C®(U) = Q0 = QOO(U) —2= QOL(U) —2 QO2(U) 2 ..

A basic problem in several complex variables is to answer the question: For what open sets U in C™ is
this complex exact?

Today we will show that the Dolbeault complex is locally exact (actually, we will prove something a little
stronger)

Theorem (1). Let U and V' be polydisks with V CU. Then if w € Q%4(U) and Ow = 0 then there exists
w € QY=Y (V) with Ou =w on V.

This just says that if we shrink the domain a little, the exactness holds.

To prove this theorem we will use a trick similar to showing that the real de Rham complex is locally
exact.

First, we define a new set

Definition. Q%9(U);, 0 < k < n is given by the following rule: w € Q%9(U)y, if and only if
W:fodzl dzr =dzi, N Ad%,, 1<ip < <ig<k

This is just a restriction on the z;’s that may be present. For example Q%4(U), = {0} and Q*(U),, =
Q%(U).
An important property of this space follows. If w € Q%9(U);, then

— 0
Ow = Z a—gdzl A dzr + QUL (),
1>k

so if dw = 0 then 0f;/0% = 0, for [ > k i.e. f; is holomorphic.
Let V,U be polydisks, V C U. Choose a polydisk W so that V. C W and W C U.

Theorem (2). If w € Q%9(U); and Ow = 0 then there exists f € Q"9 (W),_1 such that w — OB €
QO-,q(W)kil_

We claim that Theorem 2 implies Theorem 1 (left as exercise)
Before we prove theorem 2, we need a lemma

Lemma. (ICR in 1D) If g € C*°(U) with g—gl =0, | > k then there exists f € C°°(W) such that g—gl =0
forl>k and(%fk:g.

Proof. U =U; x -+ x Uy, where U; are disks and W = Wy x - -- x W,, where W; are disks. Let p € C§°(Uy)

so that p = 1 on a neighborhood of Wy,. Replacing g by p(z1)g we can assume that g is compactly supported
in zp.

Choose f to be

fzi/g(zl,...,zk,l,n,z;ﬁq,...,zn)dn/\dﬁ
2mt Je n— 2k

We showed before that 2L = g. By a change of variable we see that
P

f:—i,/ g(zl,...,zk_lzk—n,zk+1,...,zn)dn/\dﬁ
2mi Je i
so f € C°°(W) and clearly g—gl =0,1>k. QED. O

We may now prove Theorem 2

11



Proof of Theorem 2. w € Q%9(U)y,, and Ow = 0. Write
w=p+dz Av € QYU U)p1,v € QI HU)

(just decompose w) and say
v=> gidz, greC®U), I=(i1,...,ig1), s <k—1
Ow = 0 tells use that g—g =0, [ > k. By the lemma above, there exists fr € C§°(W) so that

%zg; and a—JEI:O,Z>I<:
Zk 0z

Take 8 =" frdz;, then

= 0

op = Zdzk A a—;:dzi + Qo’q(W)szl =dzp NV
sow— 0B € QW ),_;.

Theorem (3). Let U be a polydisk then the Dolbeault complex

QO’O(U) _5> Qo’l(U) _5> QO’Z(U) 5_> .
1s exact. That is, you don’t have to pass to sub-polydisks.

The above theorem is EXERCISE 1

Lecture 5

Notes about Exercise 1
Lemma. Let U and V be as in Theorem 1 above. 3 € Q%9(U), 98 = 0 then there exists o € Q1= 1(U)
such that 0o = 3 on V.

Proof. Choose a polydisk W so that V.C W, W C U. Choose p € C5°(W) with p = 1 on a neighborhood
of V. By theorem 1 there exists ag € Q%971(WW) so that Doy = B on W. If we take

_ Jpoayg onW
“=0 onU—-W

then we have a solution. O

We claim that the Dolbealt complex is exact on all degrees g > 2.

Lemma. Let Vo, V1, Va,... be a sequence of polydisks so that V. C V.11 and \JVi = U. (ezhaustion on U
by compact polydisk). There exists a; € Qo’q+1(U) such that da,, = B on V, and such that Qry] = Qp ON

r—1-

Proof. By the previous lemma there exists ., € Q%4"1(U) with Oa, = B on V,. And for a,41,a, on V,,
Oa,y1 = Oa, = B on V., 50 (a1 — ) = 0 on V,. Now ¢ > 2 so we can find v € Q%971(U) such that

0y = ay41 — ay on V. Then set oY% := a0ld, + 9y. So 0al¢Y = B on V11, a2y = a, on V,_1. a

12



We get a global solution when we set « = . on V,._; for all r.
(EXERCISE Prove exactness at ¢ = 1, i.e. make this argument work for ¢ = 1.)
What does exactness mean for degree 17 Well

pBeQ®U)  B=) fidz  fi€C™U)
We need to show that there exists g € Q*0(U) = C>°(U) so that dg = f3, i.e.

dg
07; a

fi iil,...,n

So the condition that 98 = 0 is just the integrability conditions.
So we have to show the following. That there exists a sequence of functions g, € C*(U). V; C V5 C

- C U such that ggg’_' = fi,i=1,...,n onV, (easy consequence of lemma)

We can no longer say g,4+1 — g» on V,._1. But we can pick g, such that |g,11 — gr| < 2% onV,_;.

Hint Choose g, € C°°(U) such that g‘;’i' = fion V,. Look at g, 1 —g, on V.. Note that %(g,._,_l —-gr) =0
on Vy, s0 gr41 — gr € O(V;). On V,_; we can expand by power series to get g,41 — g» = >, aa2%, and
this series is actually uniformly convergent on V,._;. We try to modify gﬁ.’fl by setting g;¢] + Pn(z), where
Py(z) = 3 a1<n Ga2”

(The exercise is due Feb 25th)

More on Dolbealt Complex

For polydisks the Dolbealt complex is acyclic (exact). But what about other kinds of open sets? The solution
was obtained by Kohn in 1963.
Let U be open in C, ¢ : U — R be such that ¢ € C*(U).

Definition. ¢ is strictly pluri-subharmonic if for all p € U the hermitian form

on Py _
a € — Z 9507, (p)a;a;
i,j

is positive definite.
(This definition will be important later for Kaehler manifolds)
Definition. A C'™ function ¢ : U — R is an exhaustion function if it is bounded from below and if for all
ceC
Ke={peUle(p) <c}
is compact.

Definition. U is pseudoconvex if it possesses a strictly pluri-subharmonic exhaustion function.

Examples
— |42 — o5 Op _
1. U=C. If we take ¢ = |2|* = 27, 55 = L.
22.U=DcC
1 Op 1+ |z)?

¢ = = >0

TI1-2F 9z02  (1-1z2])
3. UcCC,U=D-—{0} =D°, ie. the punctured disk

1 1 Op°
¢ = ———z+Llog—s -
1= |z[? ks

_ 9y
020z 920z

because Log is harmonic. Note the extra term in ¢° is so the function will blow up at its point of
discontinuity.

13



4. C" DU = Dy X --+ X Dy, where D; = |2]?> < 1. Take
1
<p_217|2i|2
5. C" DU, D{ x -+ X DY X Dyy1 x---x Dy
k 1
o=t ) Loepp
i=1 ¢

6. UCC",U=B" |z>=|z1)*>+ -+ |za]*

1 82(p 61J 221‘23'

PTISRR 0m0% (AP (- 2P

Theorem. IfU; C C", i =1,2 is pseudo-convex then Uy N Us is pseudo-convex

Proof. Take ¢; to be strictly pluri-subharmonic exhaustion functions for U;. Then set ¢ = 1 + 2 on
UiNU,y. O

Punchline:
Theorem. The Dolbealt complex is exact on U if and only if U is pseudo-conver.

This takes 150 pages to prove, so we’ll just take it as fact.
The Dolbealt complex is the left side of the bi-graded de Rham complex.

There is another interesting complex. For example if we let A? = kerd : QP9 — QP19 + 90 = 0 and
w € A" then dw € A" and we get a complex

%) %) %)

AV Al A2

Lecture 6

Review

U open C". Make the convention that Q"(U) = Q". We showed that Q" = P, ,_, "7, ie. its bigraded.
And we also saw that d = 0 + 9, so the coboundary operator breaks up into bigraded pieces.

o QP Qptla D OPa _, Qpatl

w e, pe Q. Then
dwAp)=dvAp+(—1)"wAdp

there are analogous formulas for 9,0

AwAp)=0wAp+(—1)"wA du
Because of bi-grading the de Rham complex breaks into subcomplexes
2}

%) %)

(1), : Q04 Qla 02.a

(2),: 0 2w qr1 2 o2 2

The Dolbeault complex is (2)q : 2%° 9, qo.,
Last week we showed that if U is a polydisk then the Dolbeault complex is acyclic.
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Theorem. If U is a polydisk then complex (1), and (2), are exact for all p,q.

Proof. Take I = (i1,...,ip), define QF? := Q%4 A dz;. And w € QF? if and only if w = pu A dzr, p € Q0.
And
O(w) = O(u Adzr) = Op A dzp

Therefore, if w € QF?, then Ow € Qp 4t We can get another complex, define (2)p; : QP9 9, Qp ! 6 .
Now the map pu € Q%9 — pAdzs. Thls maps (2)o bijectively onto (2)7. So (2) is acyclic. And Q"9 = P, Qp a
implies that (2), is acyclic.

What about complex with 97

Take w € QP'?, then

WZZfI,JdZI/\dZJ fro e C=U), [Il=p,|J|=q

Take complex conjugates

@ZZf]JdZ]/\dZJEQQ’p dw = 0w

This map w — @ maps (1), to (2), so (2), acyclic implies that (1), is acyclic. O

The Subcomplex (A4, d

Another complex to consider. We look at the map Q0 9, arl. Denote by AP the kernel of this map,

ker{QP:0 s, QP'}. Suppose p € AP, du € QPTHY and we know that 00 = —00p = 0, so Ou € AP+l
Moreover, du = Ou + Ou = O, so we have a subcomplex (A4, d) of (2, d), the de Rham complex
d

d d

A Al A2

This complex has a fairly simple description. Suppose p € QP0, y = ZI Il=p frdzy, and suppose further that
Op=0,1ie p€ AP. Then

— ofr ofr .
3u:28 dziNdzr =0 821-:0 i=1,...,n

so the f; are holomorphic. Because of this we have the following definition
Definition. The complex (A*,d) is called the Holomorphic de Rham complex.

When is this complex acyclic? To answer this, we go back to the real de Rham complex.

Reminder of Real de Rham Complex

Consider the usual (real) de Rham complex. Let U be an open set in R”. Then we know
Theorem (Poincare Lemma). If U is convex then (2*(U),d) is exact.

Proof. U convex, and to make things simpler, let 0 € U. Let p : U — U, p = 0. Construct a homotopy
operator Q : QF(U) — QF~1(U), satisfying

dQuw + Qdw = w — p*w

for all w € Q*(U). The exactness follows trivially if we have this operator. Now, what is the operator? We
define it the following way.
Ifw=)> fr(x)dzs, fr € C®°(U). Then

1
Qw = Z(—l)’”wir (/ tklf[(tflf)dt) dag N Ndx, A+ ANdxg,
0

r, I
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2nd Homework Problem The holomorphic version of this works. Let U C R2® C C”, convex with
0€U. Take w = Z|I|=k frdzr, fr € O(U). Let Q be the same operator (but holomorphic version)

1
Qw = Z(—l)rzir (/ tklfj(tz)dﬁ) dziy N+ Ndzg, N -+ Ndz;,
0

r, I

Show @Q : A¥ — A*=! and (dQ + Qd)w = w — p*w. Homework is to check that this all works. O

Theorem. U a polydisk. Then if w € QYY(U) and is closed then there exists a C° function f so that
w = 00f. (f is called the potential function of w).

This is an important lemma in Kaehler geometry, which we will use later.

Proof. Just diagram chasing:

%) %)

T i Q.1 QL1 2.1
70 00— 102 20
C—s g0 —4s g1 4o g2

let w =w"! € QM dw =0, s0 Ow = dw = 0. dw = 0 implies there is an a so that w = da,a € Q0. We can
find b € A' so that da = 9b. So d(a —b) =0, and a — b = dc, where ¢ € Q% = C>°. Then d(a — b) = ddc.
Put d(a — b) = 0a = w. So w = ddec. O

Exercise (not to be handed in) w € QP¢(U). And dw = 0 then w = 9du, u € QP~ 1471,

Functoriality

U open in C", V open in C*. Coordinatized by (z1,...,2,), (w1,...,ws). Let f: U — V be a mapping,
f=1,..-, fr), fi : U — C. fis holomorphic if each f; is holomorphic.

Theorem. f is holomorphic iff f*(Q2°(V) C QLO(U), i.e. for every w € QLO(V), f*w e QMO(U).

Proof. Necessity. w = dw;, then _
fro=dfi=0f; +8fi € QY°(U)

then df; = 0, so f; € O(U).
Sufficiency. Check this. O

Corollary. f holomorphic. Then f*QP4(V) C QP4(U), also w € QP4(V), then f*dw = df*w, which implies
that f*0w = 0f*w, f*Ow = 0f*w.

16



Chapter 2

Complex Manifolds

Lecture 7

Complex manifolds

First, lets prove a holomorphic version of the inverse and implicit function theorem.
For real space the inverse function theorem is as follows: Let U be open in R™ and f : U — R™ a C*
map. For p € U and for « € B.(p) we have that

£(@) = F0) + 3 ()&~ )+ Oz ~ )
T N————

I

11

I is the linear approximation to f at p.

Theorem (Real Inverse Function Theorem). If I is a bijective map R™ — R"™ then f maps a neigh-
borhood Uy of p in U diffeomorphically onto a neighborhood V' of f(p) in R™.

Now suppose U is open in C", and f : U — C™ is holomorphic, i.e. if f = (f1,..., fn) then each of the
fi are holomorphic. For z close to p use the Taylor series to write

I is the linear approximation of f at p.

Theorem (Holomorphic Inverse Function Theorem). If I is a bijective map C* — C™ then f maps
a neighborhood Uy of p in U biholomorphically onto a neighborhood V' of f(p) in C™.

(biholomorphic: inverse mapping exists and is holomorphic)

Proof. By usual inverse function theorem f maps a neighborhood U; of p is U diffeomorphically onto a
neighbrohood V of f(p) in C", i.e. g = f~! exists and is C* on V. Then f*: Q(V) — Q(U;) is bijective
and f is holomorphic, so f* : Q1(V) — Q!(U;) preserves the splitting Q! = Q10 @ Q%1 However, if g = f~1
then g* : Q1(U;) — QY(V) is just (f*)~! so it preserves the splitting. By a theorem we proved last lecture
g has to be holomorphic. O

Now, the implicit function theorem.
Let U be open in C" and f,..., fr € O(U), peU.

Theorem. If dfi,...,dfr are linearly independent at p, there exists a meighborhood Uy of p in U and a
neighborhood V' of 0 in C™ and a biholomorphism ¢ : (V,0) — (U1, p) so that

17



Proof. We can assume p = 0 and assume f; = z; + O(]z|?) i = 1,...,k near 0. Take % : (U,0) — (C",0)
given by ¥(f1,..., fe2kt1,. .-, 2n). By definition 0¢/0z(0) = Id = [d;;]. ¢ maps a neighborhood U; of 0 in
U biholomorphically onto a neighborhood V of 0 in C™ and for 1 < i < k, 9*z; = f;. Define ¢ = 1~1, then
©* fi = zi. O

Manifolds

X a Hausdorff topological space and 2nd countable (there is a countable collection of open sets that defines
the topology).

Definition. A chart on X is a triple (¢,U,V), U open in X, V an open set in C” and ¢ : U — V
homeomorphic.

Suppose we are given a pair of charts (p;, U;, Vi), ¢ = 1,2. Then we have the overlap chart

UiNnU;

where @I(Ul N UQ) = VLQ and @Q(Ul n UQ) = ‘/2,1.
Definition. Two charts are compatible if ¢; 5 is biholomorphic.

Definition. An atlas A4 on X is a collection of mutually compatible charts such that the domains of these
charts cover X.

Definition. An atlas is complete if every chart which is compatible with the members of A is in A.

The completion operation is as follows: Take Ay to be any atlas then we take Ay ~» A by adding all
charts compatible with Ag to this atlas.

Definition. A complex n-dimensional manifold is a pair (X, .4), where X is a second countable Hausdorff
topological space, A is a complete atlas.

From now on if we mention a chart, we assume it belongs to some atlas A.
Definition. (¢, U, V) a chart, p € U and ¢(p) = 0 € C", then “yp is centered at p”.
Definition. (p,U,V) a chart and z1, ..., 2, the standard coordinates on C". Then

i =2
©1,- ., en are coordinate functions on U. We call (U, ¢1,...,¢,) is a coordinate patch

Suppose X is an n-dimensional complex manifold, Y an m-dimensional complex manifold and f : X — Y
continuous.

Definition. f is holomorphic at p € X if there exists a chart (¢, U, V') centered at p and a chart (', U’, V')
centered at f(p) such that f(U) C U’ and such that in the diagram below the bottom horizontal arrow is
holomorphic

U—f>U’

V—=V

(Check that this is an intrinsic definition, i.e. doesn’t depend on choice of coordinates). From now on
f: X — C is holomorphic iff f € O(X) (just by definition)

(p,U,V) is a chart on X, V is by definition open in C* = R?". So (p,U,V) is a 2n-dimensional chart
in the real sense. If two charts (¢;, U;, Vi), i = 1,2 are 18.117 compatible then they are compatible in the
18.965 sense (because biholomorphisms are diffeomorphisms)

18



So every n-dimensional complex manifold is automatically a 2n-dimensional C'*° manifold. One applica-
tion of this observation:

Let X be an C-manifold, X is then a 2n-dimensional C'*° manifold. If p € X, then T, X the tangent
space to X (as a C*° 2n-dimensional manifold). TpX is a 2n-dimensional vector space over R.

We claim: T),Z has the structure of a complex n-dimensional vector space. Take a chart (¢, U, V') centered
at p, so ¢ : U — V is a C'*° diffeomorphism.

Take (dy)p : T, — ToC™ = C". Define a complex structure on T, X by requiring dy, to be C-linear.
(check that this in independent of the choice of ¢).

From the overlap diagram we get something like

U——U'
=
vV —sv
T L= P%’Q}
0z
(diy (dp2)p
dei,2

ToC" ———— = THC"

L.

c» cr
X.,Y, f: X — Y holomorphic, f(p) = ¢. By 18.965, df, : T, — T, check that df, is C-linear.

Lecture 8

We'll just list a bunch of definitions. X a topological Hausdorff space, second countable.
Definition. A chart is a trip (p,U, V), U open in X, V open in C and ¢ : U — V a homeomorphism.

If you consider two charts (p;, U;, Vi), i = 1,2 we get an overlap diagram. Charts are compatible if and
only if the transition maps in the overlap diagram (see above) are biholomorphic.

Definition. A atlas is a collection A of charts such that
1. The domains are a cover of X
2. All members of A are compatible.
Definition. An atlas A is a maximal atlas then (X, .A) is a complex n-dimensional manifold.

Remark: If every open subset of X is a complex n-dimensional manifold we say Ay is a member of A
with domain contained in U.
If X is a complex n-dimensional manifold it is automatically a real C'* 2n-dimensional manifold.

Definition. X,Y are complex manifolds, f : X — Y is holomorphic if locally its holomorphic.

feOX),f: X —>C. Noteif f: X Y, ¢g:Y — Z holomorphic, then fog: X — Z is as well.
Take X to be an n-dimensional complex manifolds, if we think of X as a C'° 2n-dimensional then T, X

is well defined. But we showed that T, X has a complex structure. f : X — Y holomorphic, p € X, g = f(p)
in the real case dfy, : T, — Tj, but we check that this is also C-linear.

Notion of Charts Revisited A chart (from now on) is a triple (p,U,V), U open in X, V open in C",
¢ : U — V a biholomorphic map.
Definition. A coordinate patch in X is an n-tuple (U, w1, ..., w,) where U is open in X and w; € O(U)
such that the map ¢ : U — C"
is a biholomorphic map onto an open set V' of C™.
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Charts and coordinate patches are equivalent.

Theorem (Implicit Function Theorem in Manifold Setting). X" a manifold. Uy C X is an open
set, fi,...,fx € OUy), p € Uy. Assume df1,...,dfx are linearly independent at p. Then there exists a
coordinate patch (U,w1,...,wy), p € U, U C Uy such that w; = f; fori=1,... k.

Proof. We can assume Uj is the domain of the chart (Up,V,¢), V an open set in C"*, ¢ : Uy — V a
biholomorphism. Then just apply last lecture version of implicity function theorem to f; o (¢~ 1). O

Submanifolds

X a complex n-dimensional manfiolds. ¥ C X a subset.

Definition. Y is a k-dimensional submanifold of X if for every p € Y there exists a coordinate patch
(U,z1,...,2n) with p € U such that Y N U is defined by the equation z441 = -+ = 2, = 0.

Remarks: A k dimensional submanifold of X is a k-dimensional complex manifold in its own right.

Call a coordinate patch with the property above an adapted coordinated for X. The collection of
(n+1)-tuples (U’, 21,...,2;,), (U,z1,...,2n), U =UNY, 2{ = z; |y gives an atlas for X.

By the implicit function theorem this definition is equivalent to the following weaker definition.

Definition. Y is a k-dimensional submanifold X if for every p € Y there exists an open set U of p in X
and f; € O(U) where i = 1,...,1l, l = n — k such that dfy,...,df; are linearly independent at p and Y NU,
fi=---=fi=0,1ie. locally Y is cut-out by [ independent equation.

Examples

Affine non-singular algebraic varieties in C". These are X-dimensional submanifolds, ¥ of C" such
that for every p € Y the f;’s figuring into the equation above (the ones that cut-out the manifold) are
polynomials.

Projective counterparts We start by constructing the projective space CP". Start with C"**! — {0}.
Given 2 (n + 1)-tuples we say

(205 215+ -y 2n) ~ (20s 21y -+ -+ Z0y)

in C" — {0} if there exists A € C — {0} with 2] = A\z;, i = 0,...,n. [20,21,..., 2] are equivalence classes.
We define CP™ to be these equivalence classes C" 1 — {0}/ ~.
We make this into a topological space by m: C"*1 — {0} — CP", which is given by

(20,215 -y 2n) ~ [20, 21, - - -, Zn)

We topologize CP™ by giving it the weakest topology that makes 7w continuous, i.e. U C CP™ is open if
7~ Y(U) is open.

Lemma. With this topology CP™ is compact.

Proof. Take
S* = {(20,- - z0)l20]* + - + |z = 1}

and we note

(St = CcP"
so its the image of a compact set under a continuous map, so its compact. O
Lemma. CP" is a complex n-manifold.

Proof. Define the standard atlas for CP™. For i = 0,...,n take
U, ={[z0,...,2n] € CP", z; # 0}
Take V; = C™ and define a map ¢; : U; — V; by

20 Zi Zn
(20, 2] (2, 22
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<p;1 : C" — U; is given by
(Wi, .o oywp) = [wr, .. 1wy
where wy is in the Oth place, and 1 is in the ¢th place. The overlap diagrams for Uy and U; are given by

Up N1
S
$0,1

Vo,1

Vio

We can check that Vo1 = Vi0 = {(21,...,2n), 2z # 0}. Also check that

1 29 z
vo,1: Vo1 — Vi (21,---,Zn)'—><——--~,—n)

) b
Z1 2 21

This standard atlas gives a complex structure for CP™. o

Lecture 9

We have a manifold CP™. Take
P(z0,...,Pz,) = Z Caz®

laj=m
a homogenous polynomial. Then
1. P(Az) = A™P(z), so if P(z) =0 then P(Az) =0
2. Euler’s identity holds
“\ 0P
i— =mP
Z i 82’1' m

Lemma. The following are equivalent
1. For all z € C"*! — {0}, dP, # 0
2. For all z € C" ™' — {0}, P(z) =0, dP, # 0.

we call P non-singular if one of these holds.
If X ={[z0,...,2a], P(z) = 0}. Note that this is a well-defined property of homogeneous polynomials.
Theorem. If P is non-singular, X s an n — 1 dimensional submanifold of CP™.

Proof. Let Uy, ...,U, be the standard atlas for CP". It is enough to check that X N U; is a submanifold of
U;. WE’ll check this for ¢ = 0.

Consider the map vC™ = Up given by
Y(z1y. o y2n) =1, 21,y 20

It is enough to show that Xo = v~1(X) is a complex n—1 dimensional submanifold of C". Let p(z1, ..., 2z,) =
P(1,21,...,2n). Xo is the set of all points such that p = 0. It is enough to show that p(z) = 0 implies
dp, # 0 (showed last time that this would then define a submanifold)

Suppose dp(z) = p(z) = 0. Then

OP
p(l,zl,...,zn)zozﬁ—%(l,zl, ,2n) =0 i=1,...,n
By the Euler Identity
“~ 9P oP
O:P(1,21,...,Zn):gzia—%(l,zl,...,zn)+Za—2i(1,z1,...,zn)
So %(1, 21,-..,2n) = 0, which is a contradiction because we assumed p # 0. O
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Theorem (Uniqueness of Analytic Continuation). X a connected complex manifold, V. C X is an
open set , f, g€ OX). If f=g onV then f =g on all of X.

Sketch. Local version of UAC plus the following connectedness lemma O
Lemma. For p,q € X there exists open sets U;, i =1,...,n such that

1. U; is biholomorphic to a connected open subset of C™

2. pel;

3. qeU,

4. UiNUjpq # 0.

Theorem. If X is a connected complex manifold and f € O(X) then if for some p € X, |f|: X — R takes
a local maximum then f is constant.

Corollary. If X is compact and connected O(X) = C.

This implies that the Whitney embedding theorem does not hold for holomorphic manifolds.

Let X be a complex n-dimensional manifold, X a real 2n dimensional manifold. Then if p € X then T, X
is a real 2n-dimensional vector space and T, X is a complex n-dimensional vector space.

Think for the moment of 7, X as being a 2n-dimensional R-linear vector space. Define

Jp: T, X =T, X  Jyu=+—1v

Jp is R-linear map with the property that J:Z = —J. We want to find the eigenvectors. First take T, ® C
and extend J, to this by
Jp(v®@c)=Jpu®c
Now, J, is C-linear, J, : T, ® C — T}, ® C. Also, we can introduce a complex conjugation operator
T, C—-T,C VRCc—VRC

We can split the tangent space by
T,C=T,"oT)"

where v € Tpl’O if Jyv=+v/—1v and v € Tpo’1 if J,v = —y/—1v. i.e. we break T, ® C into eigenspaces.

Ifve TpL0 iff v € Tz?’l and so the dimension of the two parts of the tangent spaces are equal.

We can also take Ty @ C = (T;)"° & (T;;)%" and [ € (T;)"° if and only if Jil = V=1l 1 € (T;)* if
Jil=—v=1l.

Check that [ € (T;)LO if and only if [ : T, — C is actually C-linear. To do this J*I = /=1l implies
Jxl(v) = I(Jpv) = v/=1l(v) which implies that I is C-lincar.

Corollary. U is open in X and p € U. Then if f € O(U then df, € (T;)LO.

Corollary. (U, z1,...,2n) a coordinate patch then (dz1)p, ..., (dzn)y is a basis of (T;)"0 and (dz1)p, ..., (dzn)p
is a basis of (T;;)".

From the splitting above we get a splitting of the exterior product

MTyeC) = @ AT C)
l+m=k

for vy, ..., v, a basis of Ty @ C then
w € A“"(T; RC)ew= ZCI,JV] ANUj
We also get a splitting in the tangent bundle

MT*eC) = @ A(T*®C)
I+m=k

22



since QF(X) is sections of A¥(T* ® C). Then

)= @ AX)

l+m=k

Locally when (U, 21,. .., z,) is a coordinate patch, w € Q™ (U) iff

w= Za[,JdZ[ ANdzZy

so we've extended the Dolbeault complex to arbitrary manifolds.

Lecture 10

IF (U, z1,...,2,) is a coordinate patch, then this splitting agrees with our old splitting. Son on a complex
manifold we have the bicomplex (Q** 9,0). Again, we have lots of interesting subcomplexes.

AP(X) = AP = ker 9 : QPO —— (p:!
the complex of holomorphic p-forms on X, i.e. on a coordinate patch w € AP(U)

WZZf[dZ] f[ € O(U)

Now, for the complex AP(X) we can compute its cohomology. There are two approaches to this
1. Hodge Theory
2. Sheaf Theory

We'll talk about sheaves fora bit.
Let X be a topological space. Top(X) is the category whose objects are open subsets of X and morphisms
are the inclusion maps.

Definition. A pre-sheaf of abelian groups is a contravariant functor F from Top(X) to the category of
abelian groups.

In english: F attached to every open set U C X an abelian group F(U) and to every pair of open sets
U D V arestriction map ryy : F(U) — F(V).

The functorality of this is that if U DV D W then ryw =rv,w - ru,v.

Examples

1. The pre-sheaf C', U — C(U) = the continuous function on U. Then the restrictions are given by
ryy : CU) — C(V) ClU)> f—flveC(V)

2. X a C* manifold. The pre-sheaf of C* functions, U — C*(U). ry,y are as in 1.
3. " is a pre-sheaf, U — Q"(U). Restriction is the usual restriction.
4. X a complex manifold, then QP4 U — QP:9(U) is a pre-sheave.

5. X a complex manifold, then you have the sheaf U — O(U).

Consider the pre-sheaf of C*°-functions. Let {U;} be a collection of open set n X and U = |JU;. We claim

that C! has the following “gluing property”:
Given f; € C*(U;) suppose
ru,uinu; fi = 1o vinu; £

ie. fi = f; on U;NU;. Then there is a unique f € C*°(U) such that
rou f = fi
Definition. A pre-sheaf F is a sheaf if it has the gluing property.

(Note that all of all pre-sheaves in the examples are sheaves)
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Sheaf Cohomology
Let U = {U;,i € I}, I an index set, U; an open cover of X. Let J = (jo,...,jx) € I*¥T!, then define
Uy=U,N0--0Uj,

Take N* C I*+1 and let us say that J C N* if and only if Uy # 0 and take

N:|_|N’“

then this is a graded set called the nerve of the cover U;. N¥ is called the k-skeleton of N.
Let F be the sheaf of abelian groups in X

Definition. A Cech cochain, ¢ of degree k, with values in F is a map that assigns to every J € N* an
element c(J) € F(Uy).

Notation. J € N*, J = (jo,...,jx) and j; € I for all 0 < i < k. Then define

Ji = oy s Jis- -1 Jk)
then J; € N*¥1 and let r; = TU,, Uy -
We can define an coboundary operator
§: CMNU,F) = CH(U, F)

For J € N* and ¢ € C%! define 4
de(J) = Z(—l)lric(Ji)

(note that this makes sense, because c(J;) € F(Uy,).

Lemma. 62 =0, i.e. § is in fact a coboundary operator.
Proof. J € N¥t1 then
(60¢)(J) = Z(—l)iri(SC(Ji)

=3 (=D)'riry Y (=1 e(Ji )+

7 j<t
> (=0 Y (1) (i)
i §>i
this is symmetric in ¢ and j, so its 0. o

Because § is a coboundary operator we can consider H* (U, F), the cohomology groups of this complex.

What is HO(U, F)? Consider ¢ € C°(U, F) then every i € I, c(i) = fi € F(U;). If c = 0 then r; f; =7 fi
for all ,j. Then the gluing property of F tells us that there exists an f € F(X) with r;f = f;, so we have
proved that H°(X, F) = F(X), the global sections of the sheaf.

For today, we’ll just compute H*(U, C>=) = 0 for all k > 1. The proof is a bit sketchy.

Let {p,}rer be a partition of unity subordinate to {U;,i € I}. Then p, € C§°(U,) and > p, = 1 by
definition. Given J € N¥~! let (r,J) = (7, jo, - -,jk—1) and define a coboundary operator

Q:CHU,F)— YU, F)

Take c € CF, J € N¥=1 then
Qc(J) =Y pec(r,J) € C®(Uy)
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Explanation: First notice that (r, J) may not be in N*. But in this case U, and U are disjoint, so p, = 0

on Uy, so we just make these terms 0. What if (r,.J) € N* then ¢(r, J) € C°°(U,NU;) (but we want Qc(J)
to be C*(Uy).
But

pre(r, J) = {grc(r, /) gﬁ grjrl%ﬁ} nUy)
and p, € C=(U,).
Proposition. §Q + Qd = id.
Corollary. H*(U,C*>) = 0.

The same argument works for the sheaves 2*, P4, but NOT however for O.

Lecture 11

U open in C*, p € C°(U), p: U — R ten p is strictly plurisubharmonic if for all p € U the matrix

il (p)
821-82]- p
is positive definite.

If U,V open in C" then ¢ : U — V is biholomorphic then for p € C*° (V) strictly plurisubharmonic ¢*p
is also strictly plurisubharmonic. If ¢ = p(p)

8? N (3'2/) dpr 0Py
5.5 "0 = 2 520 0 0,

the RHS being s.p.s.h implies the right hand side is also.

Definition. U open in C" is pseudo-convex if it admits a s.p.s.h exhaustion function. We discussed the
examples before (in particular if Uy, Uy pseudo-convex, Uy N Us is pseudo-convex)

The observation above gives that pseudoconvexity is invariant under biholomorphism.

Theorem (Hormander). U pseudo-convex then the Dolbeault complex on U is exact.

Back to Cech Cohomology

X a complex n-dimensional manifold and U = {U;,i € I} and F a sheaf of abelian groups. We get the Cech
complex

COU, F) 2= U, F) 2 -

and HP(U,F) is the cohomology group of the Cech complex. We proved earlier that H°(U,F) = F(X).
Also, we showed that if F is one of the sheaves that we discussed HP (U, F) = 0,p > 0ie. F = C®, Q" QP9
But what we’re really interested in is F = O.

Definition. U = {U;,i € I} is a pseudoconvex cover if for each 4, U; is biholomorphic to a pseudoconvex
open set of C".

Theorem. IfU is a pseudoconvex cover then the Cech cohomology groups HP (U, Q) are identified with the
cohomology groups of the Dolbeault complex

000(x) — 2= 01 (x) 2= 02(x) 2~ ...
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This is pretty nice, because its a comparison of very different objects. We do a proof by diagram chasing.
The rows of this diagram are

0 g Q09(X) _ 9, COU, Q) . m U, Q09) s ...

To figure out the columns we have to create another way looking at the Cech complex.
Let N be the nerve of U, J € NP, c € CP(U,Q%9) iff ¢ assigns to J an element c(J) € Q%9(Uy).

Define dc € CP(U, Q209+1) by
Ie(J) = 9(c(J))

now 0 : CP(U,N%9) — CP(U,Q%91) and we can show that F =0.
Its not hard to show that the diagram below commutes.

[

P, 90) P U, 00)

B 9

CP(U, Q00+ 9, CPHL(Y, Q00+

Consider the map CP (U, Q%°) 3, CP(U,0%Y), what is the kernel of 0. ¢ € CP(U,Q%%), J € NP, ¢(J) €
C>(Uy) and dc(J) = 0 then ¢(J) € O(Uy). So we can extend the arrow that we are considering as follows

P (U, O) —= CP(U, 090) —2> CP (U, QO1) — -+

Theorem. The following sequence is exact

CP(U, Q0,0) _5> CcP(U, QO,l) 5_> .

Observation: J € NP. The set Uy is biholomorphic to a pseudoconvex open set in C”. Why? Uy is
non-empty and it is the intersection of pseudoconvex sets, and so it is also pseudoconvex.

Suppose we have ¢ € CP(U,Q%9) and dc = 0. For J € NP, ¢(J) € C=(U;) and dc(J) = 0. So there is
an f; € Q09+ such that df; = ¢(J). Now define ¢’ € CP(U, Q%% 1) by ¢/(J) = fr. Then d¢’ = c.

Now, for the diagram. Set CP? = C?(U,Q2%?), and A = Q%9(X), B? = CP(U,O). We get the following
diagram

F) F) B B
A3 03 0o 3 0 23 0 33 0
42— 20,2 4 21,2 4 22,2 d 23,2 4
Al i 20,1 d 21,1 d 22,1 J 23,1 i
JE— Z«o,o 5 Z«l,O J sz,o J ;,0 i
s m
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All rows except the bottom row are exact, all columns except the the left are exact. The bottom row computes
HP(U,O) and the left hand column computes H9(X, Dolbeault). We need to prove that the cohomology of
the bottom row is the cohomology of the left.

Hint: Take [a] € H*(X,Dolbeault), a € A*¥ = Q%*(X). The we just diagram chase down and to the
right, eventually we get down to a [b] € H*(U,O). We have to prove that this case [a] ~ [b] is in fact a
mapping (we do this by showing that the chasing does not change cohomology class) and we have to show
that the map created is bijective, which is not too hard.
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Chapter 3

Symplectic and Kaehler Geometry

Lecture 12

Today: Symplectic geometry and Kaehler geometry, the linear aspects anyway.

Symplectic Geometry

Let V be an n dimensional vector space over R, B: V x V — R a bilineare form on V.

Definition. B is alternating if B(v,w) = —B(w, v). Denote by Alt>(V) the space of all alternating bilinear
forms on V.

Definition. Take any B € Alt(V), U a subspace of V. Then we can define the orthogonal complement by
Ut ={veV,Bu,v)=0,YucU}

Definition. B is non-degenerate if V- = {0}.

Theorem. If B is non-degenerate then dimV' is even. Moeover, there exists a basis ey, ...,en, f1,-.., fn Of

V' such that Bl(e;,en) = B(fi, fj) =0 and B(e;, fj) = dij

Definition. B is non-degenerate if and only if the pair (V| B) is a symplectic vector space. Then e;’s and
f;’s are called a Darboux basis of V.

Let B be non-degenerate and U a vector subspace of V'
Remark:
dim U+ = 2n — dim V and we have the following 3 scenarios.

1. U isotropic < U+ D U. This implies that dimU < n
2. U Lagrangian < U+ = U. This implies dim U = n.
3. U symplectic < U+NU = ). This implies that U~ is symplectic and B|y and B|;. are non-degenerate.

Let V = V™ be a vector space over R we have
Alt2(V) = A2(V)
is a canonical identification. Let vq,...,v,, be a basis of v, then

1
Alt*(V) > B+ 3 ZB(vi,vj)v;‘ A Vs

and the inverse A2(V*) 3 w +— B, € Alt*(V) is given by
B(’U, ’LU) =iw (in)

Suppose m = 2n.
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Theorem. B € Alt*(V) is non-degenerate if wp € A%(V) satisfies wly # 0
1/2 of Proof. B non-degenerate, let eq,..., f, be a Darboux basis of V' then

wB :Zef/\f;

wp=nlel AN fiA---Nep A fr#0

and we can show

Notation. w € A?(V*), symplectic geometers just say “By, (v, w) = w(v,w)”.

Kaehler spaces

V = V2" V a vector space over R, B € Alt> (V) is non-generate. Assume we have another piece of structure
amap J:V — V that is R-linear and J? = —1.

Definition. B and J are compatible if B(v, w) = B(Jv, Jw).

Exercise(not to be handed in) Let Q(v,w) = B(v, Jw) show that B and J are compatible if and only if
@ is symmetric.

From J we can make V a vector space over C by setting v/—1v = Jv. So this gives V' a structure of
complex n-dimensional vector space.

Definition. Take the bilinear form H : V x V — C by

H(v,w) = \/%_1(3(1},11)) +vV=1Q(v, w))

B and J are compatible if and only if H is hermitian on the complex vector space V. Note that
H(va ’U) = Q(U, ’U).
Definition. V, J, B is Kahler if either H is positive definite or @ is positive definite (these two are equivalent).
Consider V* @ C = Homg(V,C), so if I € V* @ C then [ : V — C.

Definition. [ € (V*)1 if it is C-linear, i.e. I(Jv) = /=1l(v). And [ € (V*)%! if it is C-antilinear, i.e.
1(Jv) = —v/—Tl(v).

Definition. v = [(v). J*l(v) = 1J(v).

Then if [ € (V)10 then [ € (V*)OL If I € (V)10 then J*I = /=11, 1 € (V*)%1, J*l = —/—11.

So we can decompose V* ® C = (V)10 @ (V*)01 je. decomposing into ++/—1 eigenspace of J* and
(V*)O’l — (V*)O’l.

This decomposition gives a decomposition of the exterior algebra, A"(V* @ C) = A"™(V*) ® C. Now, this
decomposes into bigraded pieces

AV eC)= @ APV
k+l=r

ARL(V*) is the linear span of k, [ forms of the form
A A AL A A vy € (VR0
Note that J* : V* ® C — V* ® C can be extended to a map J* : A"(V* @ C) — A"(V* ® C) by setting
J UGN AN =T LA NI,

on decomposable elements 1 A --- Al. € A",

We can define complex conjugation on A"(V* ® C) on decomposable elements w = Iy A --- Al by
o= A Al

A"(V*®@C) = A"(V)®C, then @ = w if and only if w € A"(V*) . And if w € ABH(V*) then @ € ALK(V*)
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Proposition. On AMH(V*) we have J* = (v/—1)F!1d.
Proof. Take w =iy A=+ A g Ay A=+ Ay, pi, vi € (VL0 then

Jw=Twm AN NJ oA ANJp = (=1)F(—vV/=1)w

Notice that for the following decomposition of A?(V ® C) the eigenvalues of J* are given below

2 _A20 1,1 0,2
A(V®(C)—A1 69A1€9A1
J* - -

So if w € A*(V* ®C) then if Jw = w.

Now, back to serious Kahler stuff.

Let V, B, J be Kahler. B — wp € A2(V*) C A?>(V*)® C.

B is J invariant, so wp is J-invariant, which happens if and only if wp € A»(V*) and wp is real if and
only if op = wp.

So there is a -1 correspondence between J invariant elements of A%(V) and elements w € A1(V*) which
are real.

Observe: (V)10 @ V*)01 L ALL(V*) by p®@ v+ pAv. Let py, ..., i, be a basis of (V)10 Take

o= Zaij,ui ®ﬁj c (V*)I,O ® (V*)O,l

Take
pla) = Z @ijfbi N [

is it true that p(a) = p(«). No, not always. This happens if a;; = —a;;, equivalently \/%[aij] is Hermitian.

We have
Alt> (V)3 B — w=wp € AMY(V¥)
\/%a. Then H is Hermitian.
L_(B ++/—=1Q), B Kahler iff and only if H is positive definite.

—1

Take a = p~H(w), H
Check that H =

b

Lecture 13

X7 a real C* manifold. Have w € Q%(X), with w closed.
For p € X we saw last time that A%(7}) = Alt*(T},), so w, < B,

Definition. w is symplectic if for every point p, B, is non-degenerate.

Remark: Alternatively w is symplectic if and only if w™ is a volume form. i.e. wy # 0 for all p.

Theorem (Darboux Theorem). If w is symplectic then for every p € X there exists a coordinate patch
(U,z1,. . &0, Y1, -, Yn) centered at p such that on U

w = Z dx; N dy;
(in Anna Cannas notes)

Suppose X" is a complex n-dimensional manifold. Then for p € X, T, X is a complex n-dimensional
vector space. So there exists an R-linear map J, : T}, — T}, Jpv = v/—1v with Jg =—1I.

Definition. w symplectic is Kahler if for every p € X, B, and .J, are compatible and the quadratic form

Qp(v,w) = By (v, Jyw)

is positive definite.
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This @), is a positive definite symmetric bilinear form on T}, for all p, so X is a Riemannian manifold as
well.
We saw earlier that J, and B, are compatible is equivalent to the assumption that w € ALY(T ;)
Last time we say there was a mapping
pi (T (1) = ASNTY) Hy = wp

The condition w, = wy, tells us that H), is a hermitian bilinear form on 7},. The condition that @, is positive
definite implies that I, is positive definite.
Let (U, z1,...,2n) be a coordinate patch on X

w= \/712hijdzi/\d,§j hi’j ECOO(U)
SO
Hy, = Z hij (P)(dzi)p @ (dz)),

the condition that H, > 0 (> means positive definite) implies that h;;(p) > 0.
What about the Riemannian structure? The Riemannian arc-length on U is given by

dS2 = Z hijdzidij

Darboux Theorem for Kahler Manifolds

Let (U, 21, ..., 2n) be a coordinate patch on X, let U be biholomorphic to a polydisk |z1| < e1,...,|2zn]| < €n.

Let w € QVY(U), dw = 0 be a Kaehler form. dw = 0 implies that 0w = dw = 0, which implies (by a theorem
we proved earlier) that for some F

w=+—100F F € C>®(U)
(it followed from the exactness of the Dolbeault complex). Also, since w = w we get that
—V/—=100F = V-109F

So replacing F by 1 (F + F) we can assume that F' is real-valued. Moreover

w=+—100F = /— Z dzZ A dZz;

so we conclude that
0%F
8Zi(92j
forallp € U, ie. F € C®(U)is a strictly plurisubharmonic function.
So we’ve proved

() >0

Theorem (Darboux). If w is a Kahler form then for every poiont p € X there exists a coordinate patch
(U, z1,...,2n) cenetered at p and a strictly plurisubharmonic function F' on U such that on U, w = /—100F .

All of the local structure is locally encoded in F', the symplectic form, the Kahler form etc.
Definition. F' is called the potential function

This function is not unique, but how not-unique is it?
Let U be a simply connected open subset of X and let Fy, F, € C°°(U) be potential functions for the

Kahler metric. Let G = F} — Fy. If 00F, = 00F, then 00G = 0. Now, 00G = 0 implies that dOG = 0, so
0G is a closed 1-form. U simply connected implies that there exists an H € C°°(U) so that G = dH, so
0G = 0H, and 9H = 0.

Let K1 = G—H, Ky = H, Ki,Ky € O. Ten G = K; + K». But G is real-valued, so G = G so
K, + Ky = K1 + K5 which implies K1 — Ky = K1 — K2 so K1 — K> is a real-valued holomorphic function
on U. But real valued and holomorphic implies that the function is constant. Thus K; — K> is a constant.
Adjusting this constant we get that K; = Ks.

Let K = K = Ko, then G =K + K.
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Theorem. If Fy and Fy are potential functions for the Kahler metric w on U thenm Fy = Fy + (K + K)
where K € O(U).

Definition. Let X be a complex manifold, U any open subset of X. F' € C>(U), F is strictly plurisubhar-
monic if /—109F = w is a Kahler form on U. This is the coordinate free definition of s.p.s.h

Definition. An open set U of X is pseudoconvex if it admits a s.p.s.h. exhaustion function.
Remarks: U is pseudoconvex if the Dolbeault complex is exact.

Definition. X is a stein manifold if it is pseudoconvex

Examples of Kaehler Manifolds
1. C". Let F = |z = |21)> + - + |2a|? and then
V=100F = =1 Z dz Ndz; = w
and if we say z; = x; + v/ —1y then
w=2 Z dx; N dy;
then standard Darboux form.

2. Stein manifolds.

3. Complex submanifolds of Kaehler manifolds. We claim that if X” is a complex manifold, Y* a complex
submanifold in X if ¢ : Y — X is an inclusion. Then

(a) If w is a Kaehler form on X, (*w is a Kaehler form.
(b) If U is an open subset of X and F € C*®(U) is a potential function for w on U the (*F is a
potential function for the form t*w on UNY.
b) implies a), so it suffices to prove b). Let (U, z1,...,2,) be a coordinate chart adapted for Y, i.e
Y NU is defined by zx11 =+ =2, =0. w =+/—190F on U, so since ¢ is holomorphic it commutes
with 9, 8. Then B
Cw=+v—100.F UF =F(z,...,2,0,...,0)

To see this is Kaehler we need only check that *F' is s.p.s.h. Take p € UNY. We consider the matrix

2R -
1<4,5<k
| 02;0%; P | =01=
But this is the principle k£ x k minor of
| O°F - 1<4,57<
,j<n
_8Zi(92j b ] =hJ

and the last matrix is positive definite, by definition (and since its a hermitian matrix its principle
k x k minors are positive definite)

4. All non-singular affine algebraic varieties.

Lecture 14

We discussed the Kaehler metric corresponding to the potential function F(2) = |2]? = |z1|> + - -+ + |za|%.

Another interesting case is to take the potential function F = Log|z|> on C"*! — {0}. This is not s.p.s.h.
But recall we have a mapping

Cn+1_{O}LCPn 7'('(20,...,2,’”):[207---72:71]
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Theorem. There exists a unique Kaehler form w on CP® such that m*w = /=100 Log |22|. This is called
the Fubini-Study symplectic form.

We'll prove this over the next few paragraphs. Let U; = {[20,...,2n],2; # 0} and let O; = 7= }(U;) =
{(20,-.-,2n),2i # 0}. Define v; : U; — O; by mapping 7;([z0,.-.,2n]) = (20,...,2n)/2i. Notice tha
moy; =idy, and v; o w(z0, ..., 2n) = (20, -, 2n)/Zi-

Lemma. Let = /=190 Log|z|? on C**' —{0}. Then on O; we have ™~ u = p.
Proof.

|22

77, Log|z|* = (yim)* Log |z|> = Log <| |2) = Log|2|* — Log |2
24
7yt = V=Tn*y; 00 Log 2|2 = v=100(Log|2|? — Log %)
= v/—100(Log |z|* — Log z; — Log z;) = vV/—109 Log |2|* = 11
o

Corollary. We have local existence and uniqueness of w on each U;, which implies global existence and
UNIqUEness.

So we know there exists w on CP™ such that m*w = /—190 Log |z|?>. We want to show that Kaehlerity
of w. Define
pi :C" — O, pi(z1y . yzn) = (21, ., 1, ..., 2n)

Then 7o p; : C" — U; is a biholomorphism. It suffices to check that

(mopi)'w=pin*w = p*p = p; (V=109 Log |=|*)
=+v/—100Log(1 + |zi|* + - - - + |za|?) = V=100 Log(1 + |2]?)

We must check that Log(1 + |2|?) is s.p.s.h.

Zj
L+ 22

o)
— Log(1 + |2]*) =

(1 + 12765 — 2;2)

0 0ii ZiZs 1
90z, Tog(1 + |22) = —24__ _ _ZZ__
57,005 Los(L+ 121) = 790078 ~ T pE T Tr ep

We have to check that the term in parentheses is positive, but thats not too hard.
Corollary. All complex submanifolds of CP™ are Kaehler.

Suppose we have (X,w) a Kaehler manifold. We can associate to w € Q%!(X) another closed 2-form
p € QH1(X) called the Ricci form
Let (U, z1,...,2,) be a coordinate patch. Let F' € C°°(U) be a potential function for w on U, i.e.

w=+/—100F. Let )
F
G = det <621823)

This is real and positive, so the log is well defined. Define

w=+v—100Log G
Lemma. pu is intrinsically defined, i.e. it is independent of F' and the coordinate system
Proof. Independent of F Take Fy, F, to be potential functions of w on U. Then 00F, = 00F,, which, in
coordinates means that
ory | | 0F
821-82]- B 8zi82j
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Independent of Coordinates On U N U’ the formula’s look like

OF _ O°F 0405
02;0%; o = 02,0%) 0z; 823-

oF 1 [04] [ &°F | [0%
aziaéj - 0z; azfﬁzl’ 82]'

det{ oF ]{WF}HH

or in matrix notation

taking determinants we get

aziazj 82;6(92;
where
Z/
H = det [—k}
2
S0
F 0’F _
Log det [821-5'%] = Logdet lW + Logdet H + Logdet H
Log H € O(U) (at least on a branch). Apply 99 to both sides of the above. That finishes it. O

Definition. X,w a Kaehler manifold and p is the Ricci form. Then X is called Kaehler-Einstein if there
exists a constant such that p = Aw.

Take p = Aw, A #0. Let (U, 21, ..., 2,) be a coordinate patch. For F' € C*(U) a potential function for
won U
) = \w = \—1900F

= 0’F
uw=+v—100Logdet | ———
8Zi82j
By a theorem we proved last time
’F

Take F' and replace it by
1 _
F~ F+ X(G +G)

2 2
Logdet(aag_):AF det(aF):e’\F

2i0zZj 8218%

then

The boxed formula is the Monge-Ampere equation. This is essential an equation for constructing Einstein-
Kahler metrics.
Exercise Check that the Fubini-Study potential is Kaehler-Einstein with A = —(n+1). F = Log(1+|z|?)

locally on each U;. So we need to check that F' = Log(1 + |z|?) satisfies the Monge-Ampere equations.

Lecture 15

Homework problem number 2. X a complex manifold. We know we have the splitting

X)) =orux) d=0+d
p+q

We get the Dolbeault complex %°(X) 9, 0%1(X) 9, .. and for every p we get a generalized Dolbeault
complex

QP»O(X) _5> Qp,l(X) _5> Q”’Q(X) 5_> .
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this is the p-Dolbeault complex. Take kerd : Q%°(X) — Q%!(X) this is O(X) and in general kerd :
OPO0(X) — QP1(X). Call this AP(X). For u € AP(X) pick a coordinate patch (U, z1, ..., z,) then

= Zf](Z)dZil A Ndzg,

and Op = 0 implies that 9f; = 0, so fr € O(U). These AP are called the holomorphic de Rham complex.
More general, take U open in X. Then AP(X) defines a sheaf AP on X.
Exercise Let U = {U;,7 € I} be a cover of X by pseudoconvex open sets. Show that the Cech cohomology
group H4(U, A?P) coincide with the cohomology groups of

QP,O(X) _5> Qp,l(X) _5> QP’Q(X) 5_> oo

We did the special case p = 0, i.e. we showed H?(U, Q) = the Dolbeault complex.

The idea is to reduce this to the following exercise in diagram chasing. Let C = @ C*’ be a bigraded
vector space with commuting coboundary operators 6 : C%/ — C*t1J and d : C* — CHIF1,

Let V; = kerd; : C*° — C%!. Note that since dé = dd that 6V; C V1. Also let W = ker§; : C%" — C1¢
and dW; C W41

Theorem. Suppose that the sequence

o0 e i 0 2 0
and the sequence
Ci,O d Ci,l d Oi,Z d
are exact for all i. Prove that the cohomology groups of
0 Vo 21 —2> 157 2
and
d d d
0 Wo Wi Wa

are isomorphic.
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Chapter 4

Elliptic Operators
Lecture 16

This chapter by Victor Guillemin

4.1 Differential operators on R"
Let U be an open subset of R™ and let Dy be the differential operator,

1 0
\/—1 8:1:k '
For every multi-index, o = aq, ..., ay, we define
DY =D ---Dpm.

A differential operator of order r:
P:C>®(U)—C>*(U),
is an operator of the form
Pu = Z an D%, an € C®(U).
le| <r
Here |a| = ag + -+ - .

The symbol of P is roughly speaking its

defined by
(€,8) = > aa()™ =:p(x,8).

la|=r

“rth order part”. More explicitly it is the function on U x R™

The following property of symbols will be used to define the notion of “symbol” for differential operators on
manifolds. Let f: U — R be a C* function.

Theorem. The operator . 4
u € C®(U) — e peitly

1S a sum
T

> " P (4.1.1)

=0

P; being a differential operator of order i which doesn’t depend on t. Moreover, Py is multiplication by the
function

po(z) =: P(x,¢)
with & = 2L i=1,...n.

Ox;’
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Proof. Tt suffices to check this for the operators D®. Consider first Dy:

- . 0
e " Dpefu = Dyu + t—f .
Oxk
Next consider D¢
efithaeitfu _ efitf(D(lh.“Dzn)eitfu

(efithleitf)al . (efithneitf)anu

which is by the above

8f aq af [e]
Dy+t=—=—) - (Dnp+t "
(Drttg =) (Dnt ity )
and is clearly of the form (4.1.1). Moreover the ¢" term of this operator is just multiplication by
0 nos 0 \a
— e (=—) " 4.1.2
() (o) (412)

O

Corollary. If P and Q are differential operators and p(x,§) and q(x, &) their symbols, the symbol of PQ is
p(x,€) q(z, s).
Proof. Suppose P is of the order r and @ of the order s. Then

e—itfPQeitfu — (e—itfpeitf) (e—itheitf)u
(p(z, )" +---) (q(z, dO)E + - )u
= (plz, df)a(z, A+ + - )u.

O
Given a differential operator
P = Z aaD®
loe|<r
we define its transpose to be the operator
ueC®U)— Z D“Gou =: Plu.
oo <7
Theorem. For u,v € C§°(U)
(Pu,v) =: /Puﬁdw = (u, P").
Proof. By integration by parts
(D ) /D vd ! / 0 v dk
u,v) = wdr = — | =—uv
F b v—1 oxy,
1 0 -
= (u, dyv).
Thus
(D“u,v) = (u, D)
and
(aa D%u,v) = (D%, anv) = (u, DG,v),.
O
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Exercises.
If p(z, £) is the symbol of P, p(x,£) is the symbol of pt.

Ellipticity.
P is elliptic if p(z,£) ¢ 0 for all z € U and £ € R™ — 0.

4.2 Differential operators on manifolds.

Let U and V be open subsets of R™ and ¢ : U — V a diffeomorphism.
Claim. If P is a differential operator of order m on U the operator

u€C®(V) = (p7') Pp'u
is a differential operator of order m on V.

Proof. (¢~ 1)*DYp* = ((4,071)”‘D1<,0”‘)w1 ((ail)*Dngo*)a" so it suffices to check this for Dy and for Dy
this follows from the chain rule

. 9pi .
Dy fiza—wk‘ﬂ Dif.

This invariance under coordinate changes means we can define differential operators on manifolds.

Definition. Let X = X" be a real C* manifold. An operator, P : C*(X) — C®(X), is an m'™™ order
differential operator if, for every coordinate patch, (U, z1,...,z,) the restriction map

u € C®(X) — PulU
is given by an m'™ order differential operator, i.e., restricted to U,

Pu = Z ag DU, aq €C™(U).

lo|<m

Remark. Note that this is a non-vacuous definition. More explicitly let (U, z1,...,z,) and (U’,2,...,2))
be coordinate patches. Then the map
u— PulUNU’

is a differential operator of order m in the z-coordinates if and only if it’s a differential operator in the
2’'-coordinates.

The symbol of a differential operator
Theorem. Let f: X — R be C* function. Then the operator
ue C®(X) — e W pe~ithy

can be written as a sum
m

Z tm—iPi

i=0
P; being a differential operator of order i which doesn’t depend on t.

Proof. We have to check that for every coordinate patch (U,x1,...,x,) the operator
u e C®(X) — e W Peth1U

has this property. This, however, follows from Theorem 4.1.
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In particular, the operator, Py, is a zero*™ order operator, i.e., multiplication by a C> function, po.

Theorem. There exists C*° function
o(P): T"X - C

not depending on f such that

po(x) = o(P)(x,§) (4.2.1)
with € = df,.
Proof. Tt’s clear that the function, o(P), is uniquely determined at the points, £ € T, by the property (4.2.1),

so it suffices to prove the local existence of such a function on a neighborhood of z. Let (U, z1,...,2,) be a
coordinate patch centered at = and let &,...,&, be the cotangent coordinates on T*U defined by

P= ZaaD”‘

on U the function, o(P), is given in these coordinates by p(z,£) = > an(x)E*. (See (4.1.2).)

Then if

Composition and transposes

If P and @ are differential operators of degree r and s, PQ is a differential operator of degree r + s,

and o(PQ) = o(P)o(Q).

Let Fx be the sigma field of Borel subsets of X. A measure, dx, on X is a measure on this sigma
field. A measure, dz, is smooth if for every coordinate patch

(U7I17"'7xn)‘
The restriction of dz to U is of the form
pdxy...dx, (4.2.2)

 being a non-negative C*° function and dx . .. dx, being Lebesgue measure on U. dz is non-vanishing
if the ¢ in (4.2.2) is strictly positive.

Assume dz is such a measure. Given u and v € C§°(X) one defines the L? inner product

(u,v)

mw:/mm.

of u and v to be the integral

Theorem. If P : C®(X) — C>®(X) is an m™ order differential operator there is a unique m** order
differential operator, P, having the property
(Pu,v) = (u, P'v)

for all u,v € C§°(X).
Proof. Let’s assume that the support of u is contained in a coordinate patch, (U, x1,...,2,). Suppose that
on U

P = > auD
and

dx pdzxy ...dz, .
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Then

(Pu,v) = Z/aQDO‘uﬁdecl ...dzy,
@

= Z / aoeDuvdxy . . . day,
«

= Z / uD*a,pvdry ... dx,

1
= Z/U—Dagpvgod:rl...d:cn
®

= {(u, P'v)
where

1
Py = = D%Gq v .
52

This proves the local existence and local uniqueness of P! (and hence the global existence of P!).
O

Exercise.

o(P')(x,§) = o(P)(x,8).

Ellipticity.
P is elliptic if o(P)(z,&) #0 for all z € X and £ € T} — 0.
The main goal of these notes will be to prove:
Theorem (Fredholm theorem for elliptic operators.). If X is compact and
P:C®(X)—C®(X)

is an elliptic differential operator, the kernel of P is finite dimensional and u € C*°(X) is in the range of P
if and only if

(u,v) =0
for all v in the kernel of Pt.

Remark. Since P? is also elliptic its kernel is finite dimensional.

Lecture 17

4.3 Smoothing operators

Let X be an n-dimensional manifold equipped with a smooth non-vanishing measure, dz. Given K €
C>®(X x X), one can define an operator

Tk : C*(X) = C™(X)
by setting
Ticf(@) = [ K(w.)f ) dy. (431)

Operators of this type are called smoothing operators. The definition (4.3.1) involves the cho ice of the

measure, dr, however, it’s easy to see that the notion of “smoothing operator” doesn’t depend on this choice.

Any other smooth measure will be of the form, ¢(z) dx, where ¢ is an everywhere-positive C*> function, and

if we replace dy by ¢(y) dy in (4.3.1) we get the smoothing operator, Tk,, where Ki(z,y) = K(z,y) ¢(y).
A couple of elementary remarks about smoothing operators:
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1. Let L(z,y) = K(y,z). Then T}, is the transpose of Tk. For f and g in C§°(X),

(T f.9) = / (/K:Uy )d:p

/f (Trg)(y) dy = (f,Trg) -

2. If X is compact, the composition of two smoothing operators is a smoothing operator. Explicitly:
Tk, Tk, = Tk,
where
Ks(z,y) = /Kl(az,z)Kg(z,y) dz.

We will now give a rough outline of how our proof of Theorem 4.2 will go. Let I : C*°(X) — C*(X) be
the identity operator. We will prove in the next few sections the following two results.

Theorem. The elliptic operator, P is right-invertible modulo smoothing operators, i.e., there exists an
operator, @ : C*°(X) — C*°(X) and a smoothing operator, Tk, such that

PQ=1-Tk (4.3.2)
and

Theorem. The Fredholm theorem is true for the operator, I — Tk, i.e., the kernel of this operator is finite
dimensional, and f € C*°(X) is in the image of this operator if and only if it is orthogonal to kernel of the
operator, I — Ty, where L(z,y) = K(y, ).

Remark. In particular since Tk is the transpose of T7,, the kernel of I — T, is finite dimensional.

The proof of Theorem 4.3 is very easy, and in fact we’ll leave it as a series of exercises. (See §77.) The
proof of Theorem 4.3, however, is a lot harder and will involve the theory of pseudodifferential operators on
the n-torus, T™.

We will conclude this section by showing how to deduce Theorem 4.2 from Theorems 4.3 and 4.3. Let
V be the kernel of I — Ty,. By Theorem 4.3, V is a finite dimensional space, so every element, f, of C*°(X)
can be written uniquely as a sum

f=g+h (4.3.3)

where g is in V and h is orthogonal to V. Indeed, if f1,..., f;n is an orthonormal basis of V' with respect to

the L? norm
=Y (L Sk
and h = f — g. Now let U be the orthocomplement of V N Image P in V.

Proposition. Fvery f € C>°(M) can be written uniquely as a sum

f=h+1 (4.3.4)
where f1 € U, fo € Image P and f1 is orthogonal to fs.

Proof. By Theorem 4.3
Image P C Image (I — Tk). (4.3.5)

Let g and h be the “g” and “h” in (4.3.3). Then since h is orthogonal to V, it is in Image (I — Tk) by
Theorem 4.3 and hence in Image P by (4.3.5). Now let g = f; 4+ g2 where f is in U and g is in the
orthocomplement of U in V' (i.e., in V N Image P). Then

f=f+f

where fy = go + h is in Image P. Since f; is orthogonal to g and h it is orthogonal to fs.
O

Next we’ll show that
U = Ker P". (4.3.6)

Indeed f € U & f 1 Image P < (f, Pu) =0 for all u < (P'f,u) =0 for all u < P'f = 0.

This proves that all the assertions of Theorem 4.3 are true except for the finite dimensionality of Ker P.
However, (4.3.6) tells us that Ker P! is finite dimensional and so, with P and P! interchanged, Ker P is
finite dimensional.
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4.4 Fourier analysis on the n-torus

In these notes the “n-torus” will be, by definition, the manifold: T™ = R™/27Z". A C* function, f, on T"
can be viewed as a C* function on R™ which is periodic of period 27: For all k € Z"

flz+27k) = f(x). (4.4.1)
Basic examples of such functions are the functions
e keZ', kx=kixi+ - kntn.
Let P = C>(T") = C* functions on R™ satisfying (4.4.1), and let @ C R™ be the open cube

O<azi<2r. i=1,....n.

1 n
Tnfdac: (%) /Qfd:n

and given f,g € P we’ll define their L? inner product by

Given f € P we’ll define

{(f,9)=[ Jfgde.
Tn

T’ll leave you to check that _ _
<ezkz , ezlz>
is zero if k # ¢ and 1 if k = £. Given f € P we'll define the k" Fourier coefficient of f to be the L? inner
product
=)= (Fo%) = [ o de.
TTL
The Fourier series of f is the formal sum

> et ke (4.4.2)

In this section I'll review (very quickly) standard facts about Fourier series.
It’s clear that f € P = D*f € P for all multi-indices, a.

Proposition. If g = S¢f
ck(g) = k%er(f) -

Proof.
/ D fe™ ™ dy = fDeetkz dy
n TTL
Now check ) .
Daezkx _ kaezk:v )
O
Corollary. For every integer r > 0 there exists a constant C, such that
ler(f)] < Cr(L+ (k%)™ (4.4.3)
Proof. Clearly
1
(DI < e [ 1flde=Co.
o< 5z [ 11
Moreover, by the result above, with g = D* f
k*Ck ()l = |Ck (9)] < Ca
and from this it’s easy to deduce an estimate of the form (4.4.3).
O
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Proposition. The Fourier series (4.4.2) converges and this sum is a C* function.

To prove this we’ll need

Lemma. If m > n the sum

1 m/2
B kez™
2 (1 n |k|2) CPEE
COTLUCT’g@S.

Proof. By the “integral test” it suffices to show that the integral

m/2
1

S — d
/Rn (1+|x|2) !

converges. However in polar coordinates this integral is equal to

) 1 m/2 )
n— PR} " d
! / (1 + |r|2) b

(Yn—1 being the volume of the unit n — 1 sphere) and this converges if m > n.

Combining this lemma with the estimate (4.4.3) one sees that (4.4.2) converges absolutely, i.e.,

> ler(f)]

(4.4.4)

converges, and hence (4.4.2) converges uniformly to a continuous limit. Moreover if we differentiate (4.4.2)

term by term we get

D« § ckezkx — § kackezk:v

and by the estimate (4.4.3) this converges absolutely and uniformly. Thus the sum (4.4.2) exists, and so do

its derivatives of all orders.
Let’s now prove the fundamental theorem in this subject, the identity

ch(f)eikx = f(x).

Proof. Let A C P be the algebra of trigonometric polynomials:

feds f= Z ape’™®

|k[<m

for some m.

Claim. This is an algebra of continuous functions on 7" having the Stone—Weierstrass properties

1) Reality: If f € A, f € A.
2) 1€ A

3) If x and y are points on T" with x # y, there exists an f € A with f(x) # f(y).

(4.4.5)

Proof. Ttem 2 is obvious and item 1 follows from the fact that etk = ¢~ Finally to verify item 3 we note

that the finite set, {e®!, ..., e} already separates points. Indeed, the map
T _ (Sl)n
mapping z to 1, ..., e is bijective.
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Therefore by the Stone-Weierstrass theorem A is dense in C°(T™). Now let f € P and let g be the
Fourier series (4.4.2). Is f equal to g7 Let h = f — ¢g. Then

<h, eika:> — <f’ eikaz> _ <g’ eikx>

= al(f) —a(f) =0

so (h,e*®) = 0 for all e** hence (h,¢) = 0 for all ¢ € A. Therefore since A is dense in P, (h,¢) = 0 for
all ¢ € P. In particular, (h,h) =0,s0 h =0 .

o

I'll conclude this review of the Fourier analysis on the n-torus by making a few comments about the L2
theory.

The space, A, is dense in the space of continuous functions on 7" and this space is dense in the space of
L? functions on T". Hence if h € L?(T™) and (h,e?**) = 0 for all k the same argument as that I sketched

above shows that h = 0. Thus )
{e?  k ez}

is an orthonormal basis of L?(T™). In particular, for every f € L?(T™) let

ck(f) = <f7 eik:v) .

Z Cr (f)ezlm

converges in the L? sense to f and one has the Plancherel formula

(F 1) =D lex(NI? kez.

Then the Fourier series of f

Lecture 18

4.5 Pseudodifferential operators on 7"

In this section we will prove Theorem 4.2 for elliptic operators on T™. Here’s a road map to help you
navigate this section. §4.5.1 is a succinct summary of the material in §4. Sections 4.5.2, 4.5.3 and 4.5.4
are a brief account of the theory of pseudodifferential operators on 7" and the symbolic calculus that’s
involved in this theory. In §4.5.5 and 4.5.6 we prove that an elliptic operator on T™ is right invertible
modulo smoothing operators (and that its inverse is a pseudodifferential operator). Finally, in §4.5.7, we
prove that pseudodifferential operators have a property called “pseudolocality” which makes them behave
in some ways like differential operators (and which will enable us to extend the results of this section from
T™ to arbitrary compact manifolds).
Some notation which will be useful below: for a € R” let

(a) = (Ja]* +1)%.

Thus
la| < (a)

and for |a| >1
(a) <2[a].

4.5.1 The Fourier inversion formula
Given f € C®(T™), let cx(f) = (f, e***). Then:

1) Ck(Daf) = kack(f).
2) ek (f)| < Cr{k)™" for all r.
3) Ye(fletr = f.
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Let S be the space of functions,
g:7Z"—C

satisfying

lg(k)| < Cr(k)™"

F:C®(T")— S, Ff(k)=ck(f)
is bijective and its inverse is the map,
ges— Zg(k)eim .

for all . Then the map

4.5.2 Symbols

A function a : T™ x R™ — C is an 8™ if, for all multi-indices, o and (3,

IDSD| < Cap(€)™ 1L (5.2.1)
Examples
1) a(z,8) = Z|a\§m aa ()€Y, an € C=(T™).
2) (&)™

)
3) acS"and be S™ = abe S,
4)

a€8™ = DDlaesm 1A,

The asymptotic summation theorem

Given b; € ™% i =0,1,..., there exists a b € S™ such that

b—Y b eSS (5.2.2)

j<i
Proof. Step 1. Let { =m +¢€, € > 0. Then

[bi(, )] < Cifg)™ ™" =

Thus, for some \;,

i €) < (€)™

for [£] > A;. We can assume that \; — 400 as i — +o00. Let p € C*°(R) be bounded between 0 and 1 and
satisfy p(t) =0 for t <1 and p(t) =1 for t > 2. Let

b=> p <|§|> i, ). (5.2.3)

Then b is in C°(T™ x R™) since, on any compact subset, only a finite number of summands are non-zero.
Moreover, b — Zj<i b; is equal to:

() 2o

The first summand is compactly supported, the second summand is in ™! and the third summand is
bounded from above by
1 _
>t

k>i
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which is less than (£)¢~(+1) and hence, for € < 1, less than (€)™

Step 2. For |a| + |8] < N choose A; so that
DS Db, )] < o (6)
for \; < |¢|. Then the same argument as above implies that
DEDL (b= bs) < Cn(g)m VI (5.2.4)
jsi
for |a| +|8] < N.

Step 3. The sequence of \;’s in step 2 depends on N. To indicate this dependence let’s denote this sequence

by Ain, @ =0,1,.... We can, by induction, assume that for all i, A\; v < X\; n+1. Now apply the Cantor

diagonal process to this collection of sequences, i.e., let A\; = X\;; . Then b has the property (5.2.4) for all N.
We will denote the fact that b has the property (5.2.2) by writing

by by (5.2.5)

The symbol, b, is not unique, however, if b ~ > b; and ¥’ ~ > b;, b — b is in the intersection, ) S?,
—00 < £ < o0.
O

4.5.3 Pseudodifferential operators

Given a € 8™ let
T?: S — C>(T™)

be the operator

Tog = alw k)g(k)e™ .

Since _
|D%a(x, k)e™™| < Cp(k)mT

and
lg(k)| < Co (k) (mtntlal+D)

this operator is well-defined, i.e., the right hand side is in C*°(7™). Composing T with F we get an operator
Ty : C®(T™) — C=(T").
We call T, the pseudodifferential operator with symbol a.

Note that , ,
T.e™* = a(x, k)™ .

Also note that if

P = Y au(z)D" (5.3.1)

la|<m
and
p(x,&) = Z ao(T)EY . (5.3.2)
la|<m
Then
P=T,.



4.5.4 The composition formula

Let P be the differential operator (5.3.1). If a is in 8" we will show that PT, is a pseudodifferential operator
of order m + r. In fact we will show that

PT, = Tpea (5.4.1)
where
poae) = 3 F0p@&Dlal.6) (5.42)
la|<m
and p(x,&) is the function (5.3.2).
Proof. By definition
PT.e*® = Pa(z,k)e*®

_ eikx (efikxpeikz)a(l,’ k) )

Thus PT, is the pseudodifferential operator with symbol

e T Pet™a (x, £) . (5.4.3)
However, by (5.3.1):
eI Peiéy( Z o (1) D8y (7)
Zaa )(D + &) “u(z)
— P(e,D+Eul).
Moreover,
plan+&) =Y % %p(w,f)nﬁ :
S0

pla, D+ &u Zﬂ, aﬁﬁpa:f)D u(z)
and if we plug in a(z, §) for u(x) we get, by (5.4.3), the formula (5.4.2) for the symbol of PTy,.

4.5.5 The inversion formula

Suppose now that the operator (5.3.1) is elliptic. We will prove below the following inversion theorem.
Theorem. There exists an a € S~™ and an r € (S, —oo < { < 0o, such that
Pl,=1-T,.

Proof. Let
pm(xag): Z aa(x)ga-
laj=m

By ellipticity pm(z,&) # 0 for € € 0. Let p € C*°(R) be a function satisfying p(¢t) = 0 for t < 1 and p(t) =1
for ¢ > 2. Then the function
ao 3
(5.6 = Pl

is well-defined and belongs to S~™. To prove the theorem we must prove that there exist symbols a € S™™
and r € NS, —o0 < £ < oo, such that

(5.5.1)

pogq=1-—r.
We will deduce this from the following two lemmas.

48



Lemma. Ifb e S° then
b—poagb

is in S*—1.

Proof. Let ¢ =p — pm. Then ¢ € S™ 1 50 goapb is in S ! and by (5.4.2)

poagh = ppmoagb+ qoagh
= pmaob+:b+
where the dots are terms of order ¢ — 1.
O
Lemma. There exists a sequence of symbols a; € S~™ ™%, i =0,1,..., and a sequence of symbols r; € S77,
1=0,..., such that ag is the symbol (5.5.1), ro =1 and
poa; =r; —Tit1
for all i.
Proof. Given ay,...,a;_1 and rq,...7;, let a; = ;a0 and 7;,1 = r; — poa;. By Lemma 4.5.5, r;;,; € S7¢ L.
O
Now let @ € S~ be the “asymptotic sum” of the a;’s
a ~ Z a; .
Then
o0
pOaNZPOai:ZH*ﬁﬂ =ro=1,
i=1
sol—poa~0,ie,r=1-pogqisin[S* —oc <l < 0.
O

4.5.6 Smoothing properties of YDO’s

Let a € 8, ¢ < —m — n. We will prove in this section that the sum

Ko(z,y) =Y a(w, k)@ (5.6.1)
is in C™(T# x T™) and that T, is the integral operator associated with K,, i.e.,
Tu(e) = [ Kalew)uty) dy.

Proof. For |a| + 8] <m
Dg‘Dga(x, E)etk@=v)

is bounded by (k)‘*!*I+18 and hence by (k). But £ +m < —n, so the sum
Z Dg‘Dga(:r, k)etk(@—y)
converges absolutely. Now notice that
/Ka(:r, y)e* dy = a(z, k)e*® = T, et .
Hence Ty, is the integral operators defined by K,. Let
S =(8", —oo<loo. (5.6.2)

If @ is in $7°°, then by (5.6.1), T, is a smoothing operator.
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4.5.7 Pseudolocality

We will prove in this section that if f and g are C*° functions on 7™ with non-overlapping supports and a
is in 8™, then the operator
u€C®(T") — fT,gu (5.7.1)

is a smoothing operator. (This property of pseudodifferential operators is called pseudolocality.) We will
first prove:

Lemma. If a(z,§) is in S™ and w € R", the function,

ay(x,€) = a(z, £ +w) —a(x,§) (5.7.2)
is in S™ L.
Proof. Recall that a € 8™ if and only if

IDgD{a(x,6)| < Cap&)™ 7.

From this estimate is is clear that if a is in 8™, a(z,€ + w) is in ™ and g—g(x,f) is in S™~1, and hence
that the integral

1
0
(2, €) = /0 > G g tw) e

in S™1.
Now let ¢ be a large positive integer and let a be in 8™, m < —n — £. Then

Kq(z,y) = Za(x, k)ett@—v)
is in C*(T™ x T™), and T, is the integral operator defined by K,. Now notice that for w € Z"
(e 0 D Ko(z,y) = aw(z, k)Y, (5.7.3)
so by the lemma the left hand side of (5.7.3) is in C**1(T™ x T"™). More generally,
(e7 = — DN Ky (2, y) (5.7.4)
is in C*N(T™ x T™). In particular, if  # y, then for some 1 <4 <n, 2; —y; Z0 mod 277, so if
w=(0,0,...,1,0,...,0),

(a “1” in the i*M-slot), e?®=¥)¥ £ 1 and, by (5.7.4), K,(z,y) is C*tV is a neighborhood of (z,y). Since N
can be arbitrarily large we conclude
Lemma. K,(z,y) is a C*® function on the complement of the diagonal in T™ x T™.

Thus if f and g are C*° functions with non-overlapping support, fT,g is the smoothing operator, Tk,
where

K(z,y) = f(x)Ka(z,y)g(y) - (5.7.5)

O

We have proved that T, is pseudolocal if a € 8™, m < —n — ¢, { a large positive integer. To get rid of
this assumption let (D)" be the operator with symbol (£)?V. If N is an even positive integer

(DN = (3 DI +D*

is a differential operator and hence is a local operator: if f and g have non-overlapping supports, f(D)" g is
identically zero. Now let ay(z,&) = a(z,£)(€)~N. Since ay € S, T, is pseudolocal for N large. But

T, = Tuy (D)YN, so T, is the composition of an operator which is pseudolocal with an operator which is local,
and therefore T}, itself is pseudolocal.
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4.6 Elliptic operators on open subsets of 1"

Let U be an open subset of T™. We will denote by ¢y : U — T™ the inclusion map and by ¢f; : C*(T") —
C*®(U) the restriction map: let V' be an open subset of T"™ containing U and

P=3Y" au()D, aa(z)€C=(V)

lal<m

an elliptic m*" order differential operator. Let
P' = Z D%a,(x)
o] <m

be the transpose operator and

Pr(z,8) = Z aa (7)€"

|a]=m
the symbol at P. We will prove below the following localized version of the inversion formula of § 4.5.5.
Theorem. There exist symbols, a € S™™ and r € S~ such that
PuTy, = (I —T)). (4.6.1)

Proof. Let v € Cg°(V') be a function which is bounded between 0 and 1 and is identically 1 in a neighborhood
of U. Let
Q=PPy+(1—-y)(Q_D)".

This is a globally defined 2m'™ order differential operator in 7™ with symbol,

V(@) P (, )17 + (1 = ()€™ (4.6.2)

and since (4.6.2) is non-vanishing on 7" x (R™ — 0), this operator is elliptic. Hence, by Theorem 4.5.5, there
exist symbols b € S72™ and r € S~ such that

Qly=1-1T,.
Let T, = P*yT},. Then since v = 1 on a neighborhood of U,
(I =Ty) = QT
= ;(PP'YT, +(1—7) Y DTy)
= 1 ;PP'YT,
= PL*UPt’)/Tb = Pu;T,.

4.7 Elliptic operators on compact manifolds
Let X be a compact n dimensional manifold and
P:C®(X)— C®(X)

an elliptic m*™ order differential operator. We will show in this section how to construct a parametriz for P:
an operator
Q:CT(X) = C7(X)
such that I — PQ is smoothing.
Let V;,i=1,..., N be a covering of X by coordinate patches and let U;, i = 1,..., N, U; C V; be an
open covering which refines this covering. We can, without loss of generality, assume that V; is an open

subset of the hypercube
{zeR" O0<z;<2r i=1,...,n}
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and hence an open subset of T™. Let
{pieCyU;), i=1,...,N}

be a partition of unity and let v; € C§°(U;) be a function which is identically one on a neighborhood of the
support of p;. By Theorem 4.6, there exist symbols a; € S™™ and r; € S~ such that on T":

Puy To, = v, (I = T7,). (4.7.1)
Moreover, by pseudolocality (1 — v;)Tq,p; is smoothing, so
YiTa,pi — 117, Ta; pi

and
PyiTo,pi — PL*UiTaipi

are smoothing. But by (4.7.1)
Pugy Ta, pi — pil

is smoothing. Hence

is smoothing as an operator on T". However, P~;Ty,p; and p;I are globally defined as operators on X and
hence (4.7.2) is a globally defined smoothing operator. Now let @ = > v;T,,p; and note that by (4.7.2)

PQ-1

is a smoothing operator.
O

This concludes the proof of Theorem 4.3, and hence, modulo proving Theorem 4.3. This concludes the
proof of our main result: Theorem 4.2. The proof of Theorem 4.3 will be outlined, as a series of exercises,
in the next section.

4.8 The Fredholm theorem for smoothing operators
Let X be a compact n-dimensional manifold equipped with a smooth non-vanishing measure, dzr. Given

K €C®(X x X) let
Tk : C®(X) — C*(X)

be the smoothing operator 3.1.
Exercise 1. Let V be the volume of X (i.e., the integral of the constant function, 1, over X). Show that if
max |K(x,y)| < %, 0<ex<1

then I — Tk is invertible and its inverse is of the form, I — T, L € C*°(X x X).
Hint 1. Let K; = K o---0 K (i products). Show that sup |K;(x,y)| < Ce® and conclude that the series

> Ki(z,y) (4.8.1)

converges uniformly.
Hint 2. Let U and V be coordinate patches on X. Show that on U x V

D?DgKl(xvy) =K* OKi*Q OKﬁ(I,y)

where K%(x,2) = DK (x,z) and K?(z,y) = DgK(z,y). Conclude that not only does (8.1) converge on
U x V but so do its partial derivatives of all orders with respect to = and y.

Exercise 2. (finite rank operators.) Tk is a finite rank smoothing operator if K is of the form:

N
K(z,y) = Z fi()gi(y) . (4.82)
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(a) Show that if Tk is a finite rank smoothing operator and T, is any smoothing operator, Tk T, and
T1 Tk are finite rank smoothing operators.

(b) Show that if Tk is a finite rank smoothing operator, the operator, I — Tk, has finite dimensional kernel
and co-kernel.

Hint. Show that if f is in the kernel of this operator, it is in the linear span of the f;’s and that f is in the
image of this operator if

/f(y)gi(y)dyzo, i=1,...,N.

Exercise 3. Show that for every K € C*°(X x X) and every € > 0 there exists a function, K; € C*(X x X)
of the form (4.8.2) such that
sup | K — Ki|(z,y) < €.

Hint. Let A be the set of all functions of the form (4.8.2). Show that A is a subalgebra of C(X x X) and that
this subalgebra separates points. Now apply the Stone—Weierstrass theorem to conclude that A is dense in
C(X x X).

Exercise 4. Prove that if Tk is a smoothing operator the operator

I—-Tkg:C®(X) - C®(X)
has finite dimensional kernel and co-kernel.
Hint. Show that K = K; + K5 where K7 is of the form (4.8.2) and K> satisfies the hypotheses of exercise 1.
Let I — T}, be the inverse of I — Tk,. Show that the operators

(I—TK)O (I—TL)
(I*TL) [e] (I*TK)

are both of the form: identity minus a finite rank smoothing operator. Conclude that I — Tx has finite
dimensional kernel and co-kernel.

Exercise 5. Prove Theorem 4.3.
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Chapter 5

Hodge Theory

Lecture 19

(First see notes on Elliptic operators)

Let X be a compact manifold. We will show that Section 7 of the notes on Elliptic operators works for
elliptic operators on vector bundles.

We'll be working with the basic vector bundles TX @ C, T*X ® C, AY(T*X) ® C etc.

Let review the basic facts about vector bundle theory. E — X is a rank k (complex) vector bundle then
given U open in X we define Ey = E |y. Given p € U there exists an open set U 3 p and a vector bundle
isomorphism such that

E————>UxCk

N

Notation. C*°(E) denotes the C* sections of E.

Suppose we have EY — X, i = 1,2 vector bundles of rank k; and suppose we have an operator P :
C>(E') — C*°(E?).
Definition. P is an mth order differential operator if
(a) P is local. That is for every open set U C X there exists a linear operator Py : C*(E};) — C*(E})
such that if; P = Pyiy;.

(b) If 4§, @ = 1,2 are local trivializations of the vector bundle E? over U then the operator Pg in the
diagram below is an mth order differential operator

Py
C>(Ey;) C>(Ef)

vblﬁ =g
i

P
C>(U,Ck1) —= C>(U, Ck=)

Check: This is independent of choices of trivializations.
Let p € U. From ~j;, i = 1,2 we get a diagram (with £ € 7))

3

Bf ——=E} ol =0(P})(p.9)

ul ) ul

Ck1 —— (k2
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Definition. o¢ = o(P)(p, &)

Check that this is independent of trivialization.
feC>®{U), se C®Ey). Then

(=™ Pe'T)(p) = t"a(P)(p, )s(p) + O(t™ )
where £ = dfy,.
Definition. P is elliptic if ki = ky and for every p and & # 0 in T, X, then o(P)(p,&) : E; — EZ is
bijective.
5.0.1 Smoothing Operators on Vector Bundles

We have bundles E* — X. Form a bundle Hom(E!, E?) — X x X by defining that at (z,y) the fiber of this
bundle is Hom(E}, EZ). In addition lets let dz be the volume form on X.
Let K € C°°(Hom(E", E?)) and define Tk : C*°(E') — C*(E?), with f € C*°(E') by

T f(y / K(z)f
What does this mean? By definition f(z) € E; and K(z,y) : E; — E?, so (K(x,y)f(x)) € E. Thus it

makes perfect sense to do the integration in the definition.

Theorem. P : C*®(E') — C*°(E?)is an mth order elliptic differential operator, then there exists an “mth
order WDO”, Q : C*(E?) — C*(E') such that

PQ -1
s smoothing.
Proof. Just as proof outlined in notes with U;, p;,y;. But make sure that E', E? are locally trivial over U,

ie. onU;, Py, = Pf]i, SO Plﬁ]i is an elliptic system. O

5.0.2 Fredholm Theory in the Vector Bundle Setting

Let E — X be a complex vector bundle. Then a hermitian inner product on E is a smooth function
X 3p—(,), where (,), is a Hermitian inner product on E,,.

If X is compact with s1, 9 € C°°(FE) then we can make this into a compact pre-Hilbert space by defining
an L? inner product

(s1,52) = / (51 (2), 52(x))de

Lemma. Given p € X, there exists a neighborhood U of p and a Hermitian trivialization of Ey

Ey ————> U x Ck

forp e U, E, = CF and vy hermitian if E, = C* is an isomorphism of hermitian vector spaces.
Proof. This is just Graham-Schmidt O

Theorem. E' — X, i=1,2 Hermitian vector bundles and P : C*(E') — C*(E?) an mth order DO, then
there exists a unique mth order DO, P': C®(E?) — C*®(E") such that for f € C*(E'), g € C*(E?)

<P.fvg>L2 = <f7 Ptg>L2
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Proof. (Using the usual mantra: local existence, local uniqueness implies global existence global uniqueness).
So we'll first prove local existence. Let U be open and 7, 'ylzj hermitian trivialization of E;, E?J P «~s P(ﬂ],
P[ﬁj : C®(U,Ck) — C>(U,C*2). Then P(ﬁj =[Py], Pj : C®(U) - C®U), 1 <i<ky, 1 <j<k.
Set (P4)* = [Pfi], (P4)F ~ P. Then P : C®(E?%) — C®(EY).
We leave the read to check that if f € C§°(E}), g € C§°(E?#) then
(Puf,g) = (f,Plg)

This is local existence. Local uniqueness is trivial. This all implies global existence. o

Theorem (Main Theorem). X compact, B — X, i = 1,2 hermitian bundles of rank k. And P :
C>®(E') — C*(E?) an m order elliptic DO then

(a) ker Pis finite dimensional
(b) fe€ImP if and only if (f,g) =0 for all g € ker P?.

Proof. The proof is implied by existence of right inverses for P modulo smoothing and the Fredholm Theorem
for I —T when T : C*®(E') — C*(E?). O

Lecture 20

X a compact manifold, E¥ — X, k = 1,..., N complex vector bundles, D : C>®(E*) — C°°(E**!) first
order differential operator. Consider the following complex, hereafter referred to as ().

"—>C°°(Ek) _D>COO(Ek+1) D_>

() is a differential complex if D> = DD = 0.
For x € X, € € T}, we have o¢ : EX¥ — E*+1 then we have the symbol o¢(D)(x,&). And

0= 0(D*)(z,€) = o(D)(x,&)a(D)(z,£)
so we conclude that Ug = 0. So at every point we get a finite dimensional complex

g¢ 3

0 El B2

the symbol complex
Definition. (x) is elliptic if the symbol complex is exact for all  and £ € T — {0}.

Examples

(a) The De Rham complex. For this complex the bundle is
EF:Af@C=ANT"'X)®C

then C*(E*) = QF(X). The first order operation is the usual exterior derivative d : C®(E*) —
C>®(EFY). 0¢ = o(d)(z,£), where o¢ : A¥(T}) @ C — AML(T¥) ® C

Theorem. For € A*(T}) @ C, o= /—1E A pu.
Proof. w € QF(X), wy = p, f € O®(X), df, = & then

(e= ™ de'Tw), = (idf Aw)y + (dw)y = (i€ A )t + (dw)s
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Theorem. The de Rham complex is elliptic

Proof. To do this we have to prove the exactness of the symbol complex:

e Ak(T;) _A5>Ak+1(T;) L, .

To do this let ey, ..., e, be a basis of T with e; = . Then for u € A¥(T¥), 4 = e; A a + 3 where a

and [ are products just involving es, ..., e, (this is not hard to prove).

(b) Let X be complex and let us define a vector bundle

Ek _ Ao’k(T*) Coo(Ek) _ QO,k:(X)

Take D = J. This is a first order DO, 9 : C*®(E*) — C>®(E**1), 0,i = o(D)(x,£), now what is this

symbol?

Take € € T, then € = €10 + €01 where €10 € (T9st,)10, €01 € (T)%1 and €10 = €', € #£ 0 then

€01 £,
Theorem. For i € A%*(T7), o¢(u) = V=16 A pu.

Proof. w € QUF(X), wy, = p, f € C®(X), df, = &£ then

(7 el W), = (itDf Aw)ut + (Ow), = it A p 4 Ow,

Check: For £ # 0 the sequence

LL/\E(),IN « 50,15)
c e AOR(T) L A0 (s

is exact. This is basically the same as the earlier proof, when we note that A®*(T*) = A*((T;)%1). we

conclude that the Dolbeault complex is elliptic.

(c¢) The above argument forks for higher dimensional Dolbeault complexes. If we set
EF = AP*(T*X), D=0, C®E")=""X)

it is easy to show that o(9)(z,&) = “A£%1”

The Hodge Theorem

Given a general elliptic complex

. —B oo(phy B> oo(pHty 2

with dz a volume form on X, equip each vector bundle E* with a Hermitian structure. We then get an L2

inner product (,)z2 on C®(E*). And for each D : C®(E*) — C>(E**!) we get a transpose operator
D' : C>®(E*1) = C°°(E")
If for x € X, £ € T}, 0¢ = 0(D)(z,§) then
o(D")(z,€) = o,

x
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So we can get a complex in the other direction, call it (x)*

.._D;COO(Ek) _Dt>COO(Ek71)Dt_>...

and since 0 = (D")t = (DD)! = D'D! = (D")? we have that (*) is a differential complex.
Also, o(D")(z,&) = 0¢ = o(D)(z,€)". For z and & € T — {0} the symbol complex of D" is

a_t

ot
N ¢ N-1_% _ ...
0—)Ex —)Ex — >

The transpose of the symbol complex for D. So (x) elliptic implies that (x)* is elliptic.
Definition. The harmonic space for (x) is
H* = {s € C°(E*), Ds = D's = 0}
Theorem (Hodge Decomposition Theorem). We have two propositions
(a) For all k, H* is finite dimensional.

(b) Every element u of C®(E¥) can be written uniquely as a sum uj + us + uz where u; € Im(D),
Us € Im(Dt), us € Hk

Before we prove this we’ll do a little preliminary work. Let

N
E=E"
k=1

Then consider the operator
D+ D': C®(E) — C™(E)
Check: This is elliptic.
Proof. Consider Q = (D + D')2. Tt suffices to show that Q is elliptic.
Q = D?*+ DD' + D'D + (D")?

but the two end terms are 0. So
Q =DD!+ D'D

Note that @ sends C>(E*) to C*°(E¥), so Q behaves nicer than D + D!. So now we want to show that Q
is elliptic.
Let z, £ € T — {0}. Then
o(Q)(x,€) = o(DD")(x,€) + o(D'D)(w,8) = 03¢ + 0c0

(where o¢ = o(D)(z,§).
Suppose v € E¥ and o(Q)(z,&)v = 0 (i.e. it fails to be bijective). Then

((0205 + O’go’é)’U,’U) = 0= (0ev,0¢0), + (Uév, O’é’U) =0

which implies that o¢v = 0 and oév = 0. Now 0¢ = 0 implies that v € Imo¢ : EF=! — E¥ by exactness. We
know that Im o¢ L ker of, but v € ker o, so v Lv implies that v = 0.
So @ is elliptic and thus (D + DY) is elliptic. O

Lemma. H* = ker Q.
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Proof. We want to show H* C ker Q. The other direction is easy. Let u € ker Q. Then
(DD'u + D'Du,u) = 0 = (D'u, D'u) + (Du, Du) = 0
This implies that Dfu = Du = 0, so u € H*. O

Proof of Hodge Decomposition. By the Fredholm theorem every element v € C*(E¥) is of the form u =
v1 + vy where v1 € Im(Q) and v € ker@. vy € ker@ implies that vy € HE. v, € ImQ implies that
v; = Qw = D(D'w) + D*(Dw). Choose u; = DD'w,us = D*Dw and vy = ug. O

Left as an exercise: Check that u = u; + us + u3 is unique. Hint: ker D1 Im D! and ker D' L Im D. Then
the space Im(D), Im(D?) and H are all mutually perpendicular.

Lecture 21

The Hodge *-operator

Let V = V™ be an n-dimensional R-vector space. Let B : V x V — R be a non-degenerate bilinear form on
V' (Note that for the momentum we are not assuming anything about this form).

From B one gets a non-degenerate bilinear form B : A¥(V) x A*(V) — R. If a = vy A --- A, 3 =
w1 A -+ Awg then
B(a, ) = det(B(vs,v;))

Alternate definition:
Define a pairing (non-degenerate and bilinear) A*(V)x A*(V*) — R with a = v1 A- - -Avg, B = fiA---Afr,
v; €V, fi € V*. Then
<Oé, ﬂ> = d<vi7 fJ>

This gives rise to the identification A*(V*) =2 A*(V)*.
SoB:V xV — Rgives to Lg : V — V* by B(u,v) = (u, Lgv). This can be extended to a map of k-th
exterior powers, Lp : A¥(V) — A¥(V*), defined by
LB(Ul/\“-/\’Uk) = Lpvi AN--- AN Lpug

and if we have a, 8 € A*(V) then B(a, 3) = (o, Lp[3).
Let us now look at the top dimensional piece of the exterior algebra. dim A™(V) = 1, orient V' so that
we are dealing with A*(V),. Then there is a unique Q € A"(V) such that B(Q,Q) = 1.

Theorem. There exists a bijective map * : A¥(V) — A"~*(V) such that for o, 3 € A*(V') we have

aA*8 = B(a, 5)Q
Proof. From Q we get a map A™(V) = R, A2 — A. So we get a non-degenerate pairing
AF(V)x A*¥(V) = A"(V) =R

Now we have a mapping A*(V*) LR A"~#(V). Define the x-operator to be ko Lp. O

There is a clear dependence of % on the orientation of V. If we exchange € for —{) then * turns to —x.

Lets say something about the dependence on B.

Suppose we have By, another non-degenerate bilinear form on V. Then there exists a unique J : V N
so that By(u,v) = B(u,Jv). In fact we define J by requiring that Lp, : V. — V* is given by setting
L81 = LB oJ.

Extend J to a map J : A¥(V) — AF(V) by setting J(vy A--- Awvg) = Jug A--- A Jug. Then on A*(V),
Lp, =LpoJ,*; =koLp, =koLpgoJ ==x0J. So the star operator for B; and B are relation b *; = o J.
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Multiplicative Properties of x

There are actually almost no multiplicative properties of the x-operator, but there are a few things to be
said.

Suppose we have a vector space V™ = V" @ V,*? and suppose we have the bilinear form B = By & Ba.
From this decomposition we can split the exterior powers

AV)= P A(Vh) @ A% (1)
rts=k
If a1,01 € A"(V1) and ag, B2 € A"(Va) then
B(ai Aaz, 1 A B2) = Bi(ai, p1)Ba(as, B2)
Theorem. With 8; € A"(V1) and B2 € A*(Va) we have

#(B1 A B2) = (=1)™M7% 5y By A ko3

Proof. an € A"(V1), aa € A%(Va) with 1, Qs the volume forms on the vector spaces. Then let Q = Q1 A Qy
be the volume form for A”(V'). Then

(a1 ANag) * (B1 A B2) = Blar Aag, f1 A B2)Q = By (a1, 81)h A B(ag, 52)Q
= (a1 A*151) A (a2 A *232)
= (=)™ 7%y Aag A (%181 A xaf3s)

Lecture 22

Again, V. = V™ and B : V x V — R a non-degenerate bilinear form. A few properties of * we have not
mentioned yet:

Computing the x-operator

We now present a couple of applications to computation

(a) B symmetric and positive definite. Let v1,...,v, be an oriented orthonormal basis of V. If I =
(i1,...,i%) where i1 < --- < iy then vy = v;, A---Av;,. Let J =I. Then
xvr = vy
where this is postive if v; A vy = © and negative if vy Avy = —Q.

(b) Let B be symplectic and V = V2. Then there is a Darboux basis €1, f1,...,en, fn. Give V the
symplectic orientation
Q=e1NfiN---Nepfn

What does the *-operator look like? For n = 1,i.e. V =V?2 we have xl = e A fx(eANf)=1xe=¢
and xf = f.

What about n arbitrary? Suppose we have
V=Wre --aV, Vi = span{e;, fi}
then A(V) is spanned by 81 A -+ A 8, where §; € APi(V;), 0 < p; < 2. Then
#(Br A== ABn) = Hnfln A A

and we already know that % operator on 2 dimensional space.
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Other Operations
For u € V we can define an operation L, : A¥ — A¥*1 by a — u A a. We can also define this operations
dual: for v* € V*, iy- : A¥ — AF~1 the usual interior product.

But because we have a bilinear form we can find Lf, and i!. and since we have * we have other interesting
things to do, like conjugate with the x-operator:

x« 1L, % (A

Theorem. For a € AP71, B € AP
B(L,a, ) = B(a, L B)

where L, = (—1)P~1 s~ L% := L.
Proof. Begin by noting L,a A 8 = B(L,«, 3)S. Now
uNaAxB= (1P TaAuA*f = (—1)PaA*(x"tu A *3)
= aAxL,3 = B(a, L,A)Q

which implies that L, = L. O

What is this transpose really doing? We know we have a bilinear form B that gives rise to an map
L, :V — V*. Since B is not symmetric, define B*(u,v) = B(v,u), and we get a new map Lp: : V — V*.
Then:
Theorem. If v* = Lpsu, then Li = i,-.
Proof. Let uq,...,u, be a basis of V' and let vy, ...,v, be a complementary basis of V' determined by

B(ui,vj) = 6ij
and let v}, ..., v* be a dual basis of V*. Check that v = Lgsuy. Let I = (i1,...,4k—1) and J = (j1,...,jk)
be multi-indices. We claim that
B(Lu,ur,vy) = B(ur,iy:vy)

and that if j1,...,5x = 1 and 41,...,7,—1 = 1 then both sides are 1. Otherwise they are 0. O

Theorem. On AP*L (i)t = (=1)P 7! (ip)* and v* = Lpu.

Lecture 23

For the next few days we're assuming that B is symplectic and V = V?”. Choose a Darboux basis
e1, fi,--+,€n, fn. Check that Lg : V — V™ is the map

{ei - _fi*vfi - er}

where e}, f; are the dual vectors. In the symplectic case BY=_—Band Lg: = —L.
Say that w € A2V,
w = Z ei N fi

Then we have the operation L : AP — AP*2 given by a — w A « and also its transpose L* : APT2 — AP,
Lets look at the commutator [L, L!] : AP — AP.

Theorem (Kaehler, Weil). [L, L] = (p — n)Id
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Proof. L=73",Le,Ly,, so

L'=> LY LL = tpter
i

Its easy to see that Kaehler-Weil holds when n = 2.
For n-dimensions

L= L Li=L,Ls L'=Y L L=t
V; = span{e;, f;}, then AP = spanf A --- A B, where §; € APi(V}).

Note that

and
L;’(ﬂl/\"'Aﬂn):ﬂl/\"'/\(Ljﬁj)/\"'/\ﬁn

If n # j, then LiL§- = LzLi. So

[LaLt]ﬁl/\"'/\Bn:Zﬁl/\"'/\[LiaLE]ﬁi/\"'/\ﬁn

:Z(pifl)ﬂl/\"'/\ﬁn:(p—n)ﬂl/\.../\ﬂn

Lecture 24

Proposition. L! = + 1 Lx

Proposition. u € V then [L!, L] = —L,.
Proof. Proof omitted.

Let (X?",w) be a compact symplectic manifold. Let # € X and V = T}. Notice

From this form we get an identification 7, — T .

b

(a) From w, we get a symplectic bilinear form on 7.

(b)

(c) Hence from 1,2 we get a symplectic bilinear from B, on V.
)

(d) From B, we get a #-operator
*o  AP(T;) — A2 7P(T7)

(e) This gives us a #-operator on forms
*: QP(X) — Q2P(X)

We can define a symplectic version of the L? inner product on QP as follows. Take «, 3 € 2P and define

(a, 8) =/XaA*B

(Note: This is not positive definite or anything, its just a pairing)
Take o € QP 3 € OP. Then look at
dla A*B) =da A*B+ (—1)Prandx* 3
=da A3+ (=1)P"ra A x(x"1d%)p
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Since [ d(a A %3) = 0, we integrate both sides of the above and get

/Xda/\*ﬂ: (fl)p/a/\*(**ld*)ﬁ

If we introduce the notation § = (—1)? ¥~ ! d* on QP then
(da, B) = (v, 0)

Now, given the mapping L : O — QP2 La = w A a we have the following theorem
Theorem. [§,L] =d.

This identity has no analogue in ordinary Hodge Theory. This is very important.
Proof. x € X, & € Ty, then o(d)(x,§) = iL¢. On AP, 6 = (=1)Px " dx, s0 o(d)(x,&) = (—1)Pix " Lex = —iLL.
Then

o([6,L]) = i[Lg, L] = iLe = o(d)(x,€)

so [d, L] and d have the same symbol.

Now, d [, L] are first order DO’s mapping QP — QP! so d —[§, L] : QP — QPF! is a first order DO. We
want to show that this is 0.

Let (U,x1,...,%n,Y1,--.,Yn) be a Darboux coordinate patch. Consider u = 1 A -+ A 3, where 5; =
1, dl‘i, dyz or dl‘l AN dyz

These de Rham forms are a basis at each point of A(T}).

Lu = w Awu is again a form of this type since w = > dx; A dy; is of this form. Also *u i s of this from.

Note that d = 0 on a form of this type, hence § = *~1dx is 0 on a form of this type. Thus [6, L] — d is 9
on a form of this type. O

Lecture 25

Symplectic Hodge Theory

(X2", w) be a compact symplectic manifold. From z € X we get w, — B, a non-degenerate bilinear form
on T, and so induces a non-degenerate bilinear from on AP(T}).
Define (, )2 on QP as follows. Take Q = w™/n!, a symplectic volume form, a, 8 € QP

@p = [ Blap= [ anss

X

Remarks:
(a) In symplectic geometry ¥ =iqd, + = %L
(b) (,) is anti-symmetric on QP, p odd and symmetric on P, p even.
(c) [L', 6] =d' =4. And 6" = (d')! = —d, so [d, L*] = 6.

Consider the Laplace operator df + éd = dd' + d'd. Now, in the symplectic world, A = 0. We’ll prove
this: § = [d, L] = dL* — L'd, so d6 = —dL'd and §d = dL'd, so A = 0.

So for symplectic geometry we work with the bicomplex (2, d, §). We're going to use symplectic geometry
to prove the Hard Lefshetz theorem for Kaehler manifolds.

Let (X?",w) be a compact Kaehler manifold. Then we have the following operation in cohomology

v: HP(X,C) — HPT?(X) c— [w]—c
Theorem (Hard Lefshetz). +? is bijective.

Question: Is Hard Lefshetz true for compact symplectic manifolds. If not, when is it true.
Define [L!, L] = A, by Kaehler-Weil says that Aa = (n — p)a.

Lemma. [A, L!] =2L*.
Proof. AL'a — L'Aa= (n— (p—2))Lta— (n —p)Lla = 2Lt O
Lemma. [A, L] = —2L.

There is another place in the world where you encounter these: Lie Groups.
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Lie Groups

Take G = SL(2,R), then consider the lie algebra g = sl(2, R).
This is the algebra {A € Ma3(R),tr A = 0}. Generated by

=09 -6 6

Check that [X,Y] = H, [H,X] = 2X and [H,Y] = =2Y, and si(2,R) = span{X,Y, Z}, and the above
describes the Lie Algebra structure.

p:g— End(Q) be given by X — L' Y — L and H — A is a representation of the Lie algebra g on .
So  is a g-module.

Lemma. Qpqrm is a g-module of Q.

Proof. First note that Ld = dL, i.e. dLa = d(w A a) = w A da = Lda. Taking transposes we get L'6 = §L.
Then take @ € Qparm. We already know that [d, L] = §, so dL'a— L*da = da, which implies that dLfa = 0.
Similarly dLa,dLa = 0, so Lo, Lta are in Qpqm.

So since A = [L, L], Aa € Qparm and Q is a g-module. O

Note that Qpqrm, is not finite dimensional. So these representations are not necessarily easy to deal with.
Definition. Let V be a g-module. V is of finite H-type if

N
V=V
i=1

and H = \;Id on V.
In other words, H is in diagonal form with respect to this decomposition.

Example. Q) = @i’;o 0P, H=(n—p)Idon QP and Qparm = @2" Qr

p=0 "“harm> H= (n —p)ld on P

harm*

Theorem. IfV is a g-module of finite type, then every sub and quotient module is of finite type.
Proof. V = @fil Vi, H= X\ Id on V;. Let m; : V. — V; be a projection onto V;. Check that

1
T = mH(H_)‘j)

i
ie., mv = v on v;. So m; takes sub/quotient objects onto themselves. o
Lecture 26
Lemma. Take v €V, Hv = Av. We claim that H(Xv) = (A + 2)Xv.
Proof. (HX — XH)v =2Xv,s0 HXv=AXv+2Xv=(\+2)Xv. O

Lemma. If Hv = \v, then
(X, Y*lo =k — (k—1)Y* 1y

Proof. We proceed by induction. If k¥ =1 this is just [X,Y]v = Hv = Av. This is true.
Now we show that if this is true for k, its true for k£ + 1.

(X, YFFy = Xyk+ly — vi+Hi Xy
= (XYY" — (YX)Y*0 + YV(XY*)w - Y (YFX0)
= HY* +Y([X,Y*)v
=(\=2k)Y*u + Y (k(A = (E—1)Y" 1y
=((AN=2k) +E\—k—1)Y*0 = (k+ 1)(A — k)Y
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Definition. V is a cyclic module with generator v if every submodule of V' containing v is equal to V' itself.

Theorem. IfV is a cyclic module of finite H type then dimV < oo.

Proof. Let v generate V. Then v = Zfio v; where v; € V;. It is enough to prove the theorem for cyclic
modules generated by v;. We can assume without loss of generality that Hv = \v.

Now, note that only a finite number of expression Y*X'v are non-zero (since X shifts into a different
eigenspace, and there are only a finite number of eigenspaces).

By the formula that we just proved, span{YkX lv} is a submodule of V' containing v.
O

Fact: Every finite dimensional g-module is a direct sum of irreducibles.
In particular, every cyclic submodule of V' is a direct sum of irreducibles.

Theorem. Every irreducible g-module of finite H type is of the form V. =Vy & --- ® Vi where dimV; = 1.
Moreover, there exists v; € V; — {0} such that

H’Ui = (k’ — 22)’01

Y’Ui:’l}i+1 ZSk*l

X’Ui = ’L(k — (’L — 1))’01',1 ) Z 1
Xvg=0,Yv, =0

Proof. Let V=V, @ --- @V, and H = \;Id on V; and assume that \g > Ay > --- > \,,. Take v € V5 — {0}.
Note that Xv = 0, because HXv = (Ao + 2)Xv and Ao + 2 > Ao.

Consider Yv,...,Y*y #£ 0, Y*ly =0, s0 HY 'v = (\g — 2i)Y*v. and
XY =Y'Xv+iA—(i—-1)Y""lo=ilA=(i—1)Y" v

When ¢ = k£ + 1 we have
XY* oy =0=(k+1)(\—k)YF

but Y*v # 0, so it must be that A\ = k. Now just set v; = Y'v. O

Lemma. Let V be a k + 1 dimensional vector space with basis vg,...,vr. Then the relations in the above
theorem define an irreducible representation of g on 'V

Definition. V a g-module, V = @ij\;o V; of finite H-type. Then v € V is primitive if
(a) v is homogenous,(i.e. v € V)
(b) Xv=0.

Theorem. If v is primitive then the cyclic submodule generated by v is irreducible and Hv = k where k is
the dimension of this module.

Proof. v,Yv,...,Y*v #0, Y1 = 0. Take v; = Y. Check that v; satisfies the conditions. O

Theorem. FEvery vector v € V' can be written as a finite sum

v = ZYlvl

where vy 1s primitive.

Proof. This is clearly true if V' is irreducible (by the relations). Hence this is true for cyclic modules, because
they are direct sums of irreducibles, hence this is true in general. O

Corollary. The eigenvalues of H are integers.
Proof. We need to check this for eigenvectors of the form Y'v where v is primitive. But for v primitive we

know the theorem is true, i.e. Hv = kv, HY'v = (k — 21)Y'v. So write V. =@ V,, H =rId on V, O
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Lecture 27

Theorem. We can repagenate the sum so that

where
H=1Id onV;

(a) X:V; =5 Viqg and Y : Viyo — V.

cong

(b) YV, —= V_; is bijective.

Now, recall that we are going to apply this stuff to Hodge Theory. In particular, let (X?" w) be a
symplectic, compact manifold. Then we define L : Q%(X) — QF+2(X) given by a — w A a, * : QF — Q2n—F
Lt : QF2 - OF given by Lt = *L* and we defined A : Q — w, A = ild on Q"%. The Kaehler-Weil identities
said that

[LY, L] = A [A, LY =2L" [A, L] = —2L
So Q is a g-module of finite H-type with X = L', Y = L and H = A.
Corollary. The map LF : Q"% — Q"% s an isomorphism.

We can apply this to symplectic hodge theory as follows. We know in this case that
[d,L'] =06 [0,L]=d
Let Qparm = {u € Qdu = § = 0}.
Theorem. Qpqrm s a g-module of §2.

Corollary. The map L¥ : Q% — QPE s bijective.

harm harm

Hard Lefshetz Theorem

w € Q2 dw = 0. Then [w] defines a cohomology class [w] € H5z(X) = H*(X). And in turn we can define a
mapping v : H*(X) — H¥*2(X) by ¢+ [w] ~ ¢

Theorem. Let X be Kaehler then v* : H" %(X) — H"t*(X) is bijective.

What about the symplectic case? Let u € QF  with du = 0. Define a mapping Py : QF, .~ — H*(X)
by u — [u]

Theorem. (Matthieu) Hard Lefshetz holds for X if and only if Py is onto for all k.

Proof. The “only if” part is covered in the supplementary notes. Now the for the “if” part, we use the
following diagram

k
n—k L n+k
Qhamn Qhamn
l ’Yk l

ank(X) s Hn+k(X)

L is bijective, the vertical arrows are surjective, so v* is surjective. Poincare duality tells us that dim H" % =
dim H™** so v* is bijective. O

Remarks:

(a) “if” condition is automatic for Kaehler manifolds
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(b) A consequence of Hard Lefshetz. We know that H2"(X) =, R given by [u] — [y uis (by stokes
theorem) bijective. Hence one can define a bilinear form on H"~*(X) via

c1,00 =Yy ~ ey € H?"(X) 2R

By poincare and hard lefshetz this form is non-degenerate, i.e. v¥¢; —~ ¢ = 0 for all ¢y, then by

Poincare v*c; = 0 which implies that ¢; = 0.

A consequence is that for k odd H*(X) is even dimensional.

(c) Thurston showed that there exists lots of compact symplectic manifolds with dim H'(X) odd, i.e. it
doesn’t satisfy strong lefshetz.

(d) For any symplectic manifold X, let HY  (X) = Im(QF

symp K oom — HF(X)). For symplectic cohomology
you do have Hard Lefshetz.

Riemannian Hodge Theory

Let V = V™ be a vector space over R. B is a positive definite inner product on V. Assume V is oriented, then
you get * : AF(V) — A" F(V). Take vy,...,v, to be an oriented orthonormal basis of V. I = (iy,...,i),
11 < -+ <. I° the complementary multi-index. Then *v; = evre where evy A vre = vy A -+ A vy, (where €
is some sign).

Let X = X" be a compact Riemannian manifold. From the Riemannian metric we get B, a positive
definite inner product on 7}; so B), induces a positive definite inner product on AF (T7)-

From these inner products we get the star operator x, : A’; — A;“k satisfying o, 8 € A’;, a A xf3 =
By (a, B)vp where vy, is the Riemannian volume form.

Its clear that B, extends C-linearly to a C-blinear form on A’If ® C and #, extends C-linearly to A’; ® C.

A hermitian inner product on A*(T¥) ® C by (a, 8), = By(a B) and a A := (a, 3),0p.

Globally, QF(X) = C=(A*(T*X) ® C). Define an L? inner-product by «, 8 € Q*(X)

@8 = [ @)= [ anss
d

From Q°(X) % QY(X) % ... we get an elliptic complex
C®(X) —=C®(AY(T*X)®C) —= - -~
We have a hermitian inner product on the vector bundles A*(T*X) ® C, so we can get a transpose
d': C®°(AM(T*X)® C) — C*(A*HT"X) ® C)
and write d' = § and think of § as § : Q% — QF-1.

Form the corresponding Laplacian operator A = dd + dd.
Apply the general theory of Elliptic complexes to this case. We conclude that

(a) H* = {u € QF, Au = 0} is finite dimensional.
(b) HE ={u € QF du = du = 0}.

(c) Hodge Decomposition
OF = {(Im d) ® (Im 6) & H*}

(d) The map H* — H ’5 R is bijective, i.e. every cohomology class has a ungiue harmonic representation.

Lecture 28

The H ’5 p are finite-dimensional.
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Poincare Duality

Make a pairing P : QF x Q"% — C given by

P(a,B) = / alNp

X
If o is exact and 3 closed then P(a, 3) =0, since o = dw, df =0 and a A =du A B = d(u A (). By stokes
[« A Bis thus 0. P induces a pairing in cohomology, P* : Hf,, x Hp5:F — C.
Theorem (Poincare). This is a non-degenerate pairing.

We give a Hodge Theoretic Proof. First,
Lemma. §: QF — QF 1 s given by 6 = (—1)% x~1 dx
Proof. Let §; = (—1)* =1 dx, we want to show that § = §;. Let a € Q¥~! and 8 € Q"% then
dlaAB) =daAB+ (1) Tandxf

=da A x5+ (fl)kfla A x(x7d * B)
=da A *f —a A x(013)

/da/\*B:/a/\*(ﬁﬁ

SO (da,ﬁ> = (a’61ﬁ> a,nd 61 = dt = 6 n

Now integrate and apply stokes

Corollary. «HF = H"F

Proof. Take a € H*. We'll show that d *x @ = 0. This happens iff x~'d x a = £da. Since da =0, d*a = 0.
It is similarly easy to check that é x o = 0. O

Proof of Poincare Duality. If suffices to check that the pairing P : H* x H"~* — C given by a, 3 — fX alp

is non-degenerate.
Suppose P(a, 3) = 0 for all 8. Take 8 = x@. Then

P(a,ﬂ):/xoz/\*&: (o, ) =0

so this would imply that o = 0. O

A Review of Kaehlerian Linear Algebra

Definition. V = V2" a vector space over R, B, a non-degenerate alternating bilinear formon V, J: V — V
a linear map such that J? = —I. B and J are compatible if By(Jv, Jw) = Bs(v,w).

Lemma. If By and J are compatible if and only if the bilinear form B,(v,w) = Bg(v, Jw) is symmetric.
(Here By is a Riemannian metric)

J, Bs Kaehler implies that B, is positive definite.

Notice that B,.(Jv, Jw) = Bs(Jv, J?w) = Bs(v, Jw) = B,(v,w) so that B, and J are compatible. And
also notice that B,.(Jv,w) = Bs(Jv, Jw) = Bs(v,w). Let J* be the transpose of J with respect to B, Then
B,.(Jv, Jw) = B,.(v, J"Jw) = B,.(v,w)

so J'J=1Tand J' = —J.
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B,, Bs, J in Coordinates
Let e € V such that B,(e,e) =1, and set f = Je, and e = —J f. Then
Br(e,e) =1 Ba(e f) =1
Take Vi = span{e, f}. This is a J-invariant subspace. If we then take
Vf‘ = orthocomplement of Vi w.r.t B,

then for v € Vi, w € Vi, 0 = B,(Jv,w) = Bs(v,w), so Vi* is the symplectic orthocomplement of V; with
respect to Bs.
Applying induction we get a decomposition

V=heWVe oV,

where V; = span{e;, fi} such that eq, f1,...,en, fn is an oriented orthonormal basis of V' with respect to B,
and a Darboux basis with respect to B,. Note that Je; = f; and Jf; = —e;

5.0.3 B,, B, and J on A*(V)

w=>e; A f; is the symplectic element in A%(V) and Q = w"/n! =e; A fi A- - Aen A fn is the symplectic
volume for and Riemannian volume form.
On decomposable elements, « = v1 A--- Avg and = w1 A --- A wg and

By (a, B) = det(Br(vi,w;))  Bs(a, ) = det(Bs(vi, w;))
and we can define
Ja=Jvi AN N Jug
Notice that
Br(a7ﬁ) = det(Br(viawj)) = det Bs(vh Jw]) = Bs(a7 Jﬂ)
and furthermore, it is easy to check that B,.(Ja, J3) = B,(a, 3), Bs(Ja, JB) = Bs(a, 8), J* = (=1)FId and
if Jt: A¥ — A is the B,-transpose of J, then J* = (—1)¥.J.

The Star Operators

These are *, and *4, the Riemannian and symplectic star operators, respectively. Let (2 be the symplectic
(and Riemannian) volume form. For «a, 5 € A* we have

aA*.3= B.(a, )2 = Bs(a, JB) = a A %53
SO
*p = kg

Also, notice that
JaAx.JB = B.(Ja, JB)Q = Br(a, B)Q2 = a A %, 3

on the other hand JQ = Q, so
a A= Bp(a, 5)Q = Ja A #.J .

S0 *,.J = Jx, and since *, = x4J we have J*, = *,J.

Structure of A(V)

We have a symplectic element w = > e; A f; € Q2. From this, we can define a mapping L : A¥ — A**2 given
by a +— w A a. Note that
Lia=wAJa=JwAa)=JLa
so that [J, L] = 0.
Similarly for Lt : A¥+2 — A the symplectic transpose given by L! = ,L#,. Since *,, L commute with
the J map, so does Lt, so [J, L] = 0.
Notice that

B.(La, 3) = By(La, JB) = By(ov, L'JB) = By(av, JL'B) = B, (a, L' B)

so Lt is also the Riemannian transpose.
From L, L' we get a representation of SL(2,R) on A(V) and this representation is J-invariant.
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Lecture 29

We now extend *,., *g,.J, L, L', C-linearly to A* ® C. And extend B,, By to C-linear forms on A* @ C.

We can now take A'®@C = AV@ A%, where as usual the two elements of the splitting are the eigenspaces
of the J operator.

If we now let ey, fi1,...,en, fn be a Kaehlerian Darboux basis of V' and set

1
U; = 2— Tl(el —V 71f1)
then u1,...,u, is an orthonormal basis of A? with respect to the Hermitian form (u,v) = B,(u,?) and
@1,...,Up is an orthonormal basis of A%

We know from earlier that * gives rise to a splitting
NeoCc= P A
pta=Fk

and if I and J are multi-indices of length p and ¢, then the uy A % forms form an orthonormal basis of AP+
with respect to the Riemannian bilinear form («, 8) = B, («, 8).
In particular A* ® C = @p +q AP+4 is an orthonormal decomposition of A*¥ ® C with respect to the inner

product (a, 3) = B,(a, 3).
In terms of u1,...,u, € A%, the symplectic form is

Zui Ay € Ab!

w

1

= m
Consequences:

(a) L: AP — APHLaTL o AP

(b) J = (v/—1)P"9Id on AP,

(c) The star operators behave nicely, 4 : AP — A"~Pn—4,

d) #p: APT — A"TPTE s = ]

(e) L': AP — AP=1971 hecause L' = * L.

So all the operators behave well as far as bi-degrees are concerned.

5.0.4 Kaehlerian Hodge Theory

Let (X2",w) be a compact Kaehler manifold, with w € Q! a Kaehler form.

From the complex structure we get a mapping Jp, : Ak(T;) ®C — AF (T;) ® C. This induces a mapping
J 1 QF(X) — QF(X) by defining (Ja), = Jpa, and we have as before the *-operators, #,, x5 : QF(X) —
Q2" related by #, = %, @ J.

We also have (, )., (,)s bilinear forms on Q¥ defined by

<a,ﬂ>T:/XaA*TB <a,ﬂs:/XaA*sﬂ

L:QF — QF2 s given by a — w A a and L' = *,L*s = %, 1 L*,, the transpose of L with respect to (),
and {(,)s.

Finally, we have d : QF — Q**1 and its transpose 0 = 6, the transpose w.r.t. (,), and &5 the transpose
w.r.t. {,)s.

On QF 5, = (=1)F %1 d, and §, = (—1)F *, d*,. But from *, = *, 0 J we get
S = (—DFT s d s 00 = T 16,0
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We proved a little while ago that d = [§,, L]. What happens upon conjugation by J?
JdJ = [J ], L) =[5, L)

We make the following definition

Definition. d¢c = JdJ~!

So now we have

de = 1[4, L]
Theorem. d and dc anti-commute
We'll prove this later. But for now, we’ll prove an important corollary
Corollary. Let A =db + éd. Then L and L' commute with A

Proof. [dd, L] = [d, L]6 + d[¢, L], and we showed before that [d, L] = 0 and d[0, L] = ddc. Similarly [0d, L] =
ded, so [A, L] =0.
L! is the Riemannian transpose of L, and in this setting A = A, so [A, L] = 0. O

We will now use the above to prove Hard Lefshetz
Takef

H=PH  H' =keA:QF -0
k

By the results above H is invariant under L, L' and A = [L,L']. So ‘H is a finite-dimensional SL(2,R)
module.

We prove for SL(2,R) modules that L* : H"~* — H"** is bijective.

In the Kaehler case we get the following diagram

Ly,

Hn—k Hn+k

-] k |-

n— 2 n
HDRk(X) > HDEk(X)

where y*c = [WF] A c.
Unlike the diagram in the symplectic case, in this case the vertical arrows are bijections. So v¥ is bijective,
which is strong Lefshetz.

Lecture 30

Lemma. d,d® anti-commute

Proof. Write d = 0 4 0, where 0 : QP4 — QPt1a 9. QP9 — QPatl Now, d® = J'dJ = J'0J + J10J.
Take a € QP>7 then

pP—a

JloJa =P 00 = —_’—7804 = —i0a
gp+1l—q
~15 P4 =
So d® = —i(0 — 9), so d°, d anti-commute because 9 + d and d = d anti-commute. O

Now, some more Hodge Theory. _
Take the identity d© = [§, L] and decompose into its homogeneous components, by using d© = —i(d — ).
Then 9° : QP4 — QP~1a, 9 Qrt 5 QPa-lthen d =dt = 9t + 0. So dC = [0, L] because
—i(@-0)=[0" L]+ [0, L]
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and by matching degrees we get
i9=[0,10] -08=10,L]
We’ll play around with these identities for a little while.
We already know that 9% = 9 =09+ 09 = 0. And so (0H)? = (Et)2 =90 + 09" = 0. Bracket these
with L and we get
0=[(0")?% L] =[0",L)0" + 0'[0", L] = i9d" + 0 (iD)

SO

00" +0'9 =0
Similarly, from 0 = [(Et)2, L] we get

90+00 =0
Lemma. The above identities imply the following

A=Ap+ Ay

Proof.
A = dd' +d'd
= (04+0)(0'+0)+ (0" +9)(0+0)
=Ap+ Ay + (D0 +00) + (09 + 0 0)

Now since 80 + 89" = 0 and we get
0=1[00"+09", L]
=[0'9 . L]+ [09, L]
=00, L)+ [0, L]0 +D 0", L]+ [0, L]d"
= —i(0'0 - 90') — (90" — D' D)
And we get Y0 + 99t — 9999 = 0, i.e.
Ap— Ay =0

But since A = Ag + Az, Ay = Az = %A.
“This has some really neat applications”

Neat Applications

Ay is the Laplace operator for the 0 complex

010 _8>Qi,1 _o . ...

so it maps Q%7 to Q% which implies A : Q% — Q7.

So HF =ker A : QF — QF is a direct such

o @
itj=k

where H» = H* N Q.

We get a similar decomposition in cohomology

H*X,C)= @ HY(X)=ImH"
i+i=k

where H™ = ker Ag : Q%9 — Q"7 so H"/ is the jth harmonic space for the Dolbeault complex.

So H*(X,C) = @ H (X).
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Chapter 6

Geometric Invariant Theory

Lecture 31

Lie Groups

Goof references for this material: Abraham-Marsden, Foundations of Mechanics (2nd edition) and Ana
Canas p. 128
Let G be a lie group. Denote by g the Lie algebra of G which is T.G, with the lie bracket operation.

Definition. The exponential is a map exp : g — G with the following properties

(a) R — G, t— exptv is a lie group homomorphism.

(b)

=vel.G=g
t=0

—exptv
at P

Example. G = GL(n,R) = {A € M,xn(R) | det(A4) # 0}. Then g = gl(n,R) = M, «x»(R) and [A, B] =

AB — BA and )
Al
exp A= Z T

Example. G a compact connected abelian Lie group. Then the lie algebra is g with [,] = 0. g is a vector
space, i.e. an abelian lie group in its own right. Then the exponential map exp : g — G is a surjective lie
group homomorphism.

Let Z¢ = ker exp be called the Group lattice of G, then G = g/Z¢, by the first isomorphism theorem.

For instance, take G = (S*)™ = T, then g = R", exp : R® — T™ is given by (t1,...,t,) — (e'1,... eiln).
Then Z¢g = 27Z™ and G = R"/2x7Z".

Group actions
Let M be a manifold.
Definition. An action of G on M is a group homomorphism
7:G— Dif f(M)

where 7 is smooth if ev : G x M — M, (g,m) — 74(m) is smooth.
Definition. Then infinitesimal action of g on M

dr: g — Vect(M) vVEGH Uy
is given by

T(exp tv) = exp(—tvas)
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Theorem. dr is a morphism of lie algebras.
Given p € M denote
Gp = {9 € G,74(p) =p}
This is the isotropy group of p of the stabilizer of p. Then
LieGp ={v € g| vm(p) =0}
Definition. The orbit of G through p is
Gop={r(p) g G}

This is an immersed submanifold of M, and its tangent space is given by T,,(G o p) = g/gp-

The orbit space of 7 is M/G = the set of all orbits, or equivalently M/ ~ where p,q € M and p ~ ¢ iff
p = 74(q) for some g € G.

We can topologize this space, by the projection

T M—M/G p— Gop

and define the topology of M/G by U C M/G is open if and only if 7=1(U) is open (i.e. assign M/G the
weakest topology that makes 7 continuous). This, however, can be a nasty topological space.

Example. M =R, G = (R", x). And 7 maps ¢ to multiplication by ¢. Then M /G is composed of 3 points,
m(0),m(1) and 7(—1), but the set {m(1),7(—1)} is not closed.

Definition. The action 7 is free if G, = {e} for all p (e the identity).
Definition. The action 7 is locally free if g = {0} for all p (this happens if and only if G, is discrete).

Definition. 7 is a proper action if the map G x M — M x M given by (g, m) — (m, 74(m)) is a proper
map.

Theorem. If 7 is free and proper then M/Gis a differentiable manifold and 7 : M — M/G is a smooth
fibration.

Proof. (Sketch) S a slice of a G-orbit through pi.e, S is a submanifold of M of codim = dim G, with
SNGop= {p%, 1,5 ®T,Gop="T,M. Its not hard to construct such slices.

Then look at the map G x S — M, (g,s) — T4(s). This is locally a diffeomorphism at (e, p) and group
invariance implies that it is locally a diffeomorphism on G x {p}. So it maps a neighborhood W of G x {p}
diffeomorphically onto an open set O C M.

Properness insures that W = G x Uy where (U, 21, ...,Z,) is a coordinate patch on S centered at p.

Let U =0/G = Uy and (U, xy1,...,2,) is a coordinate patch on M/G.

We claim that any two such coordinate patches are compatible (Maybe add a figure here?) o

Definition. G is a complex Lie group if G is a complex manifold and the group operations (g, h) — gh
and g — ¢! are holomorphic.

Example. (a) G=GL(n,C)={A e M,(C)|det A+#0}. And the lie algebra is M,,(C) = gl(n, C).

(b) C* =C - {0}.

(c) Complex Tori. For instance T = (C*)".
Definition. An action 7 of G on M is holomorphic if

ev:GxM—-M
is holomorphic.
In particular for g € G, 74 : M — M is a biholomorphism and the G-orbits
Gop

are complex submanifolds of G.

Theorem. If T is free and proper the orbit space M /G is a complex manifold and the fibration ™ : M — M /G
is a holomorphic fiber mapping.

Proof. Imitate the proof above with S being a holomorphic slice of G o p at p. o
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Symplectic Manifolds and Hamiltonian G-actions

Let G be a connected Lie group and M,w a symplectic manifold. An action, 7 of G on M is symplectic if
T,w = w for all g,i.e. the 7, are symplectomorphisms.

Thusifv e g
T(exp tv)*w = w = exp(—tvy ) w

Then

pn exp(—tvp)*w . = Ly,w=0.

This implies that
t(vpr)dw + de(vp)w = de(vp)w =0

SO Ly,,w is closed.

Definition. 7 is a Hamiltonian action if for all v € g, ¢(vy)w is exact.

The Moment Map

Choose a basis v!,...,v" of g and let v},..., v} be a dual basis of g*.

If 7 is hamiltonian then ((vi;)w = d¢', where ¢* € C>°(M).
Definition. The map ® : M — g* defined by

b= o
is called the moment map

Remarks

(a) Note that for every v € g,
v(vp)w = de? where ¢V = (®,v)

(b) @ is only well defined up to an additive constant ¢ € g*.

(c) If M is compact one can normalize this constant by requiring that

5o
M n:

(d) Another normalization: If p € MY, ie. if G, = G, then one can require that phi‘(p) = 0 for
i=1,...,n, then ®(p) =0.

Lecture 32

Properties of the moment map.
For v,w € g, we have

Ly, d¢” = Ly, (t(wpr)w) = t([oar, war])w + e(war) Ly, w = t([var, W] )w = dqﬁ[“’w}

S0
Ly, ¢V = ¢l 4 constant

Definition. ® is equivariant if and only if

L’UM ¢w = ¢[v,w]
Remark: For G abelian, i.e. [,] =0 we have that equivarience implies G invariance, i.e.

O(14(p)) =2(p) Vp

Also, there is a derivative of the moment map d®, : T, M — g*.
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Theorem. (o) Im(d®,) = g;-
(b) kerd®, = (T,G op)=.
Two parts:

Notation. The “1” in a) is the the set of all v € g with (v,l) = 0 for [ € Imd®,,.
The “L” in b) is the symplectic L: The set of all w € T, M with wy(w,u) = 0 for v € T,G o p.

Proof. Recall that T,,G o p = {vam(p),v € g}. For every v € g and w € T, M we have
(%) (d®p(w),v) = d®p(w) = wp(vrr, w)

Hence if (*) = 0 for all w, then t(var)wp, =0, so var(p) = 0.
Similarly if (x) = 0 for all v, then w1lT,G o p. O

De Rham Theory on Quotient Spaces

Let G be a connected Lie group, and 7 an action of G on M. Suppose 7 is free and proper. Then M/G is a
manifold and
M —M/G=DB

is a fibration, whose fibers are the G-orbits.
Definition. A k-form w € QF(M) is basic if
(a) Tt is G-invariant, i.e. Tjw =w for all g € G.
(b) t(vpr)w =0 for all v € g.
Theorem. w is basic if and only if there exists a v € QF(B) with w = T*v.

The proof will be given in a series of lemmas:

Lemma. Forp € M and q = w(p) then sequence

0—=TpyGop——=T,Z

1s exact.

Proof. m is a fibration and G o p is the fiber through p. N.B. T,G o p = {vam(p), v € g}. O

Lemma. If t(va)p, =0 for all v € g there exists a vy, € AF(T*B) with (dmp,) vy = pip

Symplectic Reduction

Assume G is compact, connected and (M,w) is a symplectic manifold. Let 7 be a Hamiltonian action of
G with moment map ® : M — g*. Assume 0 € g* is a regular value of ®, i.e. for all p € ®~1(0), d®, is
surjective. Then Z = ®~1(0) is a submanifold of M.

Proposition. Two things
(a) Z is G-invariant.
(b) The action of G on Z is locally free.

Proof. Z is G-invariant if and only if exptvy : Z — Z for all v € g if and only if v,,(p) € T, Z, for all p € Z.
But vy (p) € TpZ if and only if d®,(vas(p)) = 0 if and only if dpy’ (vas(p)) = 0 for all w if and only if
Ly, ¢ (p) = 0 on Z if and only if p[**(p) = 0 at p. But p € ®~1(0).
To prove that the G action is locally free: At p € Z, d®, : T, — g* is onto. So (Imd®,)*+ =g, = 0 if
and only if the G action is locally free at p. O
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Assume G acts free on Z. Since G is compact it acts properly. And Z/G = M4 is a C°° manifold.

Proposition. Leti: Z — M be inclusion and 7 : Z — Z/G = M,cq. There exists a unique symplectic form
Wred 0N My.eq with the property that 1*w = T wyeq. So the orbit space has a god-given symplectic form.

Proof. p=i*w, v € g, then t(vz)u = *(t(vy)w) = tdg? = 0, since ¢¥ = 0 on Z. Moreover, w G-invariant
implies that p is G-invariant. So we conclude that p is basic, i.e. p = 7T wyeq, With wyeq € (22(M,,ed).
Check that this form is symplectic at p € M,cq, ¢ = 7(p),p € Z. Then

TGopC T,Z = ker(d®,) : T, — g* = (T,G o p)*

But TyM,eq = T,Z/T,Gop = (T,Gop)* /(T,Gop) and we conclude that this is a symplectic vector space. [

Lecture 33

First, some general Lie theory things. G a compact, connected Lie group. Let G¢ D G a complex Lie group.
Definition. G is the complexification of G if

(a) gc = Lie Gc=g®C

(b) The complex structure on T,G¢ is the standard complex structure on g ® C.

(¢) exp: gc — G¢ maps g into G.

(d) The map v/—1g x G — G¢ defined by (w, g) — (expw)g is a diffeomorphism.

Take G = U(n). What is g? Let H,, be the Hermitian matrices. If A € H,,, then expv/—1tA C U(n), so

g=+v—1H,.
Exercise Show G¢ = GL(n,C)
Hints:

(a) M,(C) = Lie GL(n,C) = H,, ® /—1H,, given by the decomposition

it At
A'_)A—l—A_’_A A
2 2

(b) Polar decomposition theorem: For A € GL(n,C) then A = BC where B is positive definite, B € H"
and C € U(n).

(c) exp : HY — HP° 9 i5 an isomorphism. This maps a matrix with eigenvalues ); to a matrix with
eigenvalues e

Example. Take G a compact, connected abelian Lie group. Then G = g/Z¢ and Gc = gc/Z¢.
Let M be a Kaehler manifold, w a Kaehler form, and 7 a holomorphic action of G¢ on M.
Definition. 7 is a Kaehler action if 7 |g is hamiltonian.

So we have a moment map ® : M — g* and for v € g we have vy, a vector field on M, and
t(vp)w = do* @’ = (P, v)

For p € M note that because M is Kaehler we have the addition bits of structure (B;),, (Bs)p, Jp on
T,M.
Now take v € g, vV/—1v = w € g¢. From these we get corresponding vector fields vpr, way.

Lemma. At everyp e M
war (p) = Jpvae (p)

Proof. Consider € : Gc — M, g — 74-1(p). This is a holomorphic map and (de), : gc — T, M is C-linear
and maps v, w into var(p), war (p). O
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Proposition. Ifv € g, w = /—1v, ten the vector field wys is the Riemannian gradient of ¢°.
Proof. Take pe M, v € T,M. Then

(Br)p(v,wni (p)) = Bs(v, Jywar (p)) = —Bs(v, var(p)) = t(vamr (p))wp(v) = doy(v)
QED O

Assume ® : M — g* is proper. Let Z = ®~1(0). Assume that G acts freely on Z. Then Z is a compact
submanifold of M. Then we can form the reduction M,.q = Z/G.

Consider G¢ x Z — M given by (g,2) — 74(2). Let Mg be the image of this map. Note that G¢ is a
subset of M.

Theorem (Main Theorem). (a) Mg is an open Ge-invariant subset of M.
(b) Gc acts freely and properly on Mg;.
(¢) Every G¢ orbit in M intersects Z in a unique G-orbit.
(d) Hence Mst/Ge = Z/G = Myeq.
(e) wrea is Kaehler.

Proof. (a) Since My is Ge-invariant it suffices to show that M contains an open neighborhood of Z.
Note that since G¢ = (exp v/ —1¢)G implies that My, is the image of

ViN—lgxZ — M (w,p) — (expwm)(p)

Hence it suffices to show that v is a local diffeomorphism at all points (0, p). Hence it suffices to show
that (di)op is bijective.

But (dm)op : TpZ — T,Z. So it suffices to finally prove that
Lemma. (dy)o,, maps V/—1g bijectively onto (TpZ);‘ in T,M.
Proof. Let w = /—1v in v/—1g, v € T,Z. Then
B, (v, 0ai(p) = dig(v) = 0
so wy (p)LT,Z. O
(b) Ge acts freely on M.

Lemma. Ifp € Z and w € \/—1g — {0}. Then (expwys)(p) € Z.

Proof. Let w = /—1v,v € g, then (exptwy)(p) is an integral curve of a gradient vector field of
©¥. Now ©¥(p) = 0 so ¢"(exptwys)(p) > 0 for t > 0 (since gradient vector fields are increasing. So
oY (expwar)(p) > 0 and so expwas(p) . O

N

To show that G¢ acts freely on My; it suffices to show that G¢ acts freely at p € Z. Let a € G,
a = (exp—w)y, where w € /—1g,9 € G. Suppose a € (Gc¢), then (expwn)(74(p)) = p. But
T4(p) =q € Z. So (expwar)(g) = p € Z which implies w =0, a = G. So (G¢) = G, = {e}.
We will skip proving that G¢ acts properly on Mg;.

(c¢) This will be an exercise

Exercise Every Gc-orbit in M; intersects Z in a unique G orbit. Hint: Every G¢ orbit in My, is of
the form Gcop withp € Z. a € (Gecop)NZ. Then a = (expwa)74(p), g € G, w € —sqrt—1g. Argue
as before and force w = 0.

(d) So Myeq = Z/G = My /Ge.

(e) All that remains to show is that w,..q is Kaehler.
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Proof. p € Z, w1 Z — Myeq, ¢ = 7(p). Let V be the B, -orthocomplement in T,M to T,(Gc o p)
implies that V C T,,Z and its perpendicular to T,G o p.

Remember we have dr : Mg — Myeq = Ms:/Ge is a holomorphic action.

So dmp : V — TyM,eq is C-linear and wy, | V = (dmp)*wreq |v, where V' a complementary subspace of
T,M so w, | is Kaehler implies that (wreq)q is Kaehler. O

O

Lecture 34

Let G be an n-dimensional compact connected abelian Lie group. Let g be the Lie algebra of G.

For an abelian Lie group exp : ¢ — G is a group epi-morphism and Zg = kerexp is called the group
lattice of G. Since exp is an epi-morphisms, G = g/Z¢. So we can think of exp : g — G as a projection
9—9/Z¢.

Representations of G

We introduce the dual lattice Z}, C g* a weight lattice, with o € g* in Z, if and only if a(v) € 27Z for all
v E ZLq.
Suppose we're given «; € Z%stg, i =1,...,d. We can define a homomorphism 7 : G — GL(d, C) by
(I Tlexpuv)z = (V11 Wy eV TTaalv) )

and this is well-defined, because if v € Z¢g, T(expv) = 1. But think of 7 as an action of G on C?. We get a
corresponding infinitesimal actions

dr: g — X(G) U+ Uga dr(exp —tv) = exp tvga.

We want a formula for this. We introduce the coordinates z; = x; + v —1y;. We claim

(I wed==Y_ai(v) (a:ia% - yia%> .

We must check that for each coordinate z;

d *

E(Texp —tv)" % o Ly, 2
The LHS is d

Eef\/jlmi(v)zi = —q;(v)z

and the RHS is

0 0
AP ) = A/ — 1z
(xz ayl Yi (9171) (wz + yz) Zi

SO

Ly 2 = V—1ai(v)z
Take w to be the standard kaehler form on C%
w= \/led% Ndz; = 2dei A dy;
Theorem. 7 is a Hamiltonian action with moment map
¢:C?— g
where

O(z) = |ail*dz
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Proof.
t(vga w—( Zaz ( y yzax )) chavz/\dyZ

= QZOéi(U)midJCi +yidy; = Zai(v)d(m’f + yf)
= dZai(v)|zi|2 = d(P,v)

N.B. ®(0) = 0, 0 € (C%)% implies that ® is an equivariant moment map. O
Definition. a1, ..., a4 are said to be polzarized if for all v € g we have «;(v) > 0.

Theorem. If ay,...,aq are polarized then ® : C* — g* is proper.

Proof. The map (®,v) : C* — R is already proper if a;(v) > 0, so the moment map itself is proper. O

Now, given z € C?, what can be said about G, and g.?
Notation. I, = {i,z; # 0}
Theorem. (a) G, ={expv | a;(v) € 27Z for alli € I.}
(b) 8. ={v|ai(v) =0 for alli € I'}

Corollary. 7 is locally free at z if and only if spang{c;,i € I} = g*. 7 is free at z if and only if
spanz{cy,i € 1.} = Z§,.

Let a € g*. Is a a regular value of ®.

Notation.
Ri = {(t17"'7td) € Rd7ti Z O}

Ic{l,...,d} (RY;={teRit;>0sicl}

t) = Z tiOéi

Assume «;’s are polarized. L is proper. Take a € g*. Let A, = L71(a), then A, is a convex polytope.
Denote Za, = {I,(R%); N A, # 0}. For I € Ia we have that (R%); N A = the faces of A.

Theorem. a € g* is a reqular value of ® if and only if for all I € Ta, we have spang{a;,i € I} = g* and
G acts freely on ®~1(a) if and only if spanz{a;,i € I} = Z,.

Consider L : Ri — g*

Proof. @ is the composite of L : R? — g* and the map v : C¢ — R4 which maps z — (|z1]2, ..., |zq|?) so
z € ®71(a) if an only if v(z) € A,. How just apply above. O

Symplectic Reduction

Take a € g*. Suppose a is a regular value of ®, i.e. g, = {0} for all z € ®~*(a). Then Z, = ®71(a) is a

compact submanifold of C?.
Suppose G acts freely on Z,. Then M, = Z,/G. Cousider i : Z, — C, 7w : Z, — M,.

Theorem. There exists a unique symplectic form wg, on M, such that T™w, = i*w,.

Proof. Apply the symplectic quotient procedure to ®~(a). o
Let G¢ = gc/Za = g ® C/Z,. By (1), T extends to a holomorphic action of G¢ on C¢. Then

Ge-® '(a) = {ry(2) | g € G, 2 € Za} = C& ()
then M, = (Cgtablc(a) /Gc = the holomorphic description of M,. w, is Kaehler. This M, is a toric variety.

d
stable U C

I€TA

Theorem.

where

d—{zeC| =1}
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Lecture 35

Let G be a compact connected Lie group and n = dim G, with Lie algebra g. We have a group lattice
Z¢ C g, and the dual Z}, C g* the weight lattice. Then G = g/Z¢. We can define exp : g — g/Z¢.
Take elements o; € Z§,, ¢ = 1,...,d then we get a representation 7 : G — GL(d, C) given by

Tlexpv)z = (eV 1MWz eVTTeag,),
We can think of 7 as an action. As such it preserves the Kaehler form
w=+v-1 Z dz; N\ dz;
In fact, 7 is Hamiltonian with momen t map
o:C' g, D(2) =) lafa
Note that aq,...,aq are polarized if and only if there exists a v € g such that «;(v) > 0 for all s.

Theorem. «;s are polarized if and only if ®, the moment map, is proper.

What are the regular values of ®7
Let
RY = {(t1,...,ta) € R%t; > 0}
and take I C {1,...,d}.
Notation. R¢ = {t e R t; A0 =i €I}

Consider the following maps: L : R? — g* given by

t— Ztiai

and v: C?% — Ri given by
2 (|l Lzl

Then for any a € g*, let Ay = L™ (a) NR%. Then ® = Lo, so z € ®~!(a) if and only if y(z) € A,.
Suppose that the a;s are polarized. Then A, is a compact convex set, and in fact it is a convex polytope

Definition. The index set of a polytope is defined to be
Ia, = {I|RfNA, #0}
The faces of the polytope A, are the sets
A=A, NRY, Ie€a
Theorem (1). Let a € g*. Then
(a) a is a regular value of ® if and only if for every I € Ta,
spang{a;,i € I} = g*
(b) G acts freely on ®~*(a) if and only if for all I € Ta,
spang{a;, i € I} = Z§

ZIa is partially order by inclusion, i.e. Iy < I if Iy C I5. I € ZTa is minimal iff the corresponding face Aj
is a vertex of A,, i.e. Ay = {v;} where v is a vertex of A,.
Theorem (2). (a) a is a regular value of the moment map ® if and only if for every vertex vi of A,
a;,t € I are a basis of g*.
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(b) G acts freely on ®~1(a) if andonly if for every vertex v; of A4, i,i € I are a lattice basis for 7.
Proof. In Theorem 1 it suffices to check a) and b) for the minimal elements I of Za.
Check that a) of Thm. 1 implies b) of Thm 2. So we just have to check a) of Thm. 2.

Let A;r = {v;}, where I is a minimal element of Zn. By Thm 1., span{«;,i € I} = g*. Suppose «;s are
not a basis, then there exist ¢; so that
Z C; 0y = 0

i€l
Now, vy = (t1,...,taq), t; >0 for i € I and ¢; = 0 for i ¢ I. Define (s1,...,84) € Ay by

6 — ti+ec 1€1
70 i¢l

Then L(s) = a, s € Ay, so this contradicts that A; is a singular point.

Notation. A € R? a convex polytope, v, v’ € Vert(A). Then v and v" are adjacent if they lie on a common
edge of A.

Definition. An m-dimensional polytope A is simple if for every vertex v there are exactly m vertices
adjacent to it.

[Next time we’ll show that a is a regular value of ® iff A, is simple]
Example. A tetrahedron or a cube in R3. A pyramid is not simple.

® : C? — g*, and a a regular value. G acts freely on Z, = ®~1(a). Then we can form the symplectic
quotient M, = ®~1(a)/G, which is a compact Kaehler manifold. We want to compute the de Rham and

Dolbeault cohomology groups, Hj,p(M,), H},(M,). To compute the de Rham cohomology we're going to
use Morse Theory.

A Digression on Morse Theory

Let M™ be a compact C'* manifold and let f: M — R be a smooth function.
p € Crit(f) if and only if df, = 0 (by definition). For any p € Crit(f) we have the Hessian d?f, a
quadratic form on T},. Let (U, x1,...,z,) be a coordinate patch centered at p. Then

flx)=c+ Zaij:rixj +0(z%) = d2fp +O0(z%)

and p is called non-degenerate if d?f, is non-degenerate. If p is a non-degenerate critical point, then p is
isolated.

Definition. f is Morse if all p € Crit(f) are non-degenerate, which implies that
#Crit(f) < o0
Definition. p € Crit(f) then indp = indd?f,,, i.e. if
dfy=—(l+- 2+ aip o
then ind d*f, = k.
Theorem. Let f: M — R be a Morse function with the property tat indp is even for all p € Crit(f). Then

H*» Y (M)y=0  H?*(M) = {p e Crit(f),indp = 2k}
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Back to Symplectic Reduction

Again, we're talking about the moment map ® : C? — g*, with a a regular value of ®. G acts freely on Z,
and let M, = Z,/G. Then we have the following diagram:

Za _Z> Ccnr
M,

and the mapping v: C* - R%, z — (|z1]%,..., |z4|?). 7 is G-invariant.

This implies that there exists ¢ : M, — Ri with the property that ¥ om = vy oi. Moreover v: Z, — A,.
So v : M, — Ay, A, is called the moment polytope.

Now take £ € R? and let f: M, — R be f(p) = (¥(p),§), i.e. 7*f =i* fo where

fo(z) =Y &zl
Theorem (Main Theorem). Assume for v,v" € Vert(A,), v,v’ adjacent that
(v=v',8 #0
then
(a) f: M, — R is Morse
(b) ¥ : My — A, maps Crit(f) bijectively onto Vert(A,).

(¢) For p € Crit(f) and v the corresponding vertex let vy, ..., v, be the vertices adjacent to v. Then
ind
oL = #{vi | (i = 0,€) <0} = indyg

Corollary. H?**1(M,) =0 then
b = H**(M,) = #{v € Vert(A,), ind,& = k}
that is, by is independent of &.

Lecture 36

Let G be an n-torus, and a1,...,0q € Z¢,. Define a Hamiltonian action 7 of G' on C? as follows. First we
e L:R? - g* L(t) = Ztiai

and

7€ =R y(2) = (ol L2l
then ® = L o~ is the moment map of 7. As before, we're interested in the regular values of .
Define A, = L~ !(a) NR% a convex polytope.

Theorem (1). a is a reqular value if A, is a simple n-dimensional.

For a regular call Z, = ®~1(a). Assume G acts freely on Z,. we have M, = Z,/G.
Z, —— ¢
‘|
M,

Vv:M, - R%and om =voi.
Z, =~v71(A,) implies that ¥(M,) = A,.
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Definition. A, is called the moment polytope

For ¢ € RY let f = (1,¢) and 7* f = i* fy where

d
fo(2) =Y &l
i=1

Theorem (2). Suppose that for all adjacent v,v" of A, we have (v —v',&) #0. Then
(a) f is Morse
(b) ¥ maps Crit(f) bijectively onto Vert(Ag).
(c) For q € Crit(f) ind, = ind¢ v where v =¥ (a) and the index ind,& is given by
indyxi = {vg | (vp —v,&) <0}
where the v ’s are vertices adjacent to v.
Recall:
I C{1,...,d} then t € R4 if and only if t; # 0 if and only if i € I. For A = A,
In ={I,RINA # 0}

For I € Ia, A; = R4 N A = faces of the polytope A. Recall also that there is a partial ordering I < I if
and only if I; C I.
For I minimal A; = {v;}

Theorem. a is a regular value if and only if for every vertex vr of Aq, ay,i € I form a basis of g*.

Let v; € Vert(A,). Relabel I = (1,2,...,n) so that a1, ..., o, are a basis for g*, a = > | a;o, L(vy) =
a. vy = (a1,...,an,0,...,0) and for k > n,
ap = Zak,iai

Rewrite .
L(t) = Z (tl' — Z ak,itk> o = Z a;0; = a

From this we conclude that A, is defined by

o {ti =a; =Y ap itk

t1,...,tg >0

We see immediately tat A, is m-dimensional, m = d —n. The edges of A, at vy lie along the rays v; + seg,
k=n+1,...,dfor s > 0.

Exercise Check that e, = (—ag,1,...,a5n,0,...,1,...,0) where the 1 is in the kth slot.

The conclusion is that A, is simple at vy so A, is simple.

Let v = vy be a vertex of A,. Write

Op={teAst; >0ific}=|JJ >1IA,.

Consider 7~ 1(0,). These are open G-invariant sets in Z,

Take U, = w(y~*(O,)) an open cover of M,. Let f : M, — R. What does f look like on f |,,. Take
I=(1,...,n) by relabeling. Then

n
a= g a;oy vy = (a1,...,an,0,...,0)
i=1

then
|zi?=a; i=1,...,n

ze»y—l(v1)<:>{zk_0 k>
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Proposition. v~ 1(vy) is a single G-orbit.

Proof. dim~y~!(v) = n, dimG =n and G acts freely on y~1(v).

More generally, z € Z, if and ouly if v(z) € A,. Hence by (I) O, is defined by

2i* = ai = Y ailzkl®

and z; #0,i=1,...,n.
Take fo = > &;|z;|* then (*)

i*fo=c+ Z (Ek - Z%,ifi) |2i|?

k>n
=c+ Y (ex, )|z =7"f

k>n
where ey, is defined as before. O

Proof of Theorem 2. From (x) the only critical point of f on U, is a = w(y~(v)).(Recall y~1(v) is a single
G-orbit).
Moreover 1(a) = v;. Finally if p € v~ 1(v), then

(dm)p(d®fa) = D (e O)lznl> = D (ew, ) (aF + ui)

k>n k>n

It follows that (d?f,) is (....), and the index is 2indgw. O

Also a consequence
H?** (M) =0

SO
b = dim H?*(M,) = #{Vert(A,),indgv = k}

and by = #{ind,iv = v} doesn’t depend on &. If fj is the number of k-dimensional faces of A, for

k=0,...,m then
m m—1
k= b b AU X
frm—k (k)0+(k1>1+ + bk
Exercise Prove this.

Let A be a simple m-dimensional convex polytope and fi be the number of k-dimensional faces of A.
Define by, ..., b, by the solutions to the equations

m
fmk<k)b0+.”bk

Then

Theorem (McMullen, Stanley). (a) The bys are integers.
(b) by = by
(c) bo < by <--- < by where k=[]

Proof. Exhibit A as the moment polytope of a toric variety of M.
(a) The bgs are Betti numbers of M (so integers)
(b) Poincare duality
(¢) Hard Lefschetz.
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