Lecture 20: Holder continuity of Harmonic functions.

1 Holder continuity of Harmonic functions

In this lecture we will show that harmonic functions need to have a degree of regularity,
specifically they must be Holder continuous.

Theorem 1.1 Let L be a uniformly elliptic operator in divergence form taking
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If u: R™ — R is an L harmonic function then u is holder continuous.
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The proof is a little involved, so we will first give a sketch of the proof, and then go back
to fill in the details. The aim is to use Morrey’s lemma.

Proof Pick zg € R", and define the operator L by
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Pick s > 0, and let v be an L harmonic function with v = u on 0Bs(zp). Note that the
inequalities we proved in lecture 16 apply to v so, in particular,
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for all r < 5. We use this and the inequality (a + b)? < 2a? + 2b% to estimate
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Now use a lemma which we will prove later.
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Lemma 1.2 Let |[|[A — A(zo)|| = supp, (ay),i,; |4ij — Aij(zo)|. Then
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By the first of these we get
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Now we need to estimate this last integral in terms of u. We have
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by lemma 1.2. Plugging this back into 77 gives
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By choosing s small we can get n||A — A(x)|| as small as we like. Therefore, for some
constant &’ and for any § > 0 we can pick a small s so that
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We need one more lemma.

Lemma 1.3 Let ¢ be a positive and increasing function on the positive reals, and let o, c
be positive constants. For 0 < vy < « there is § > 0 such that
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where co is some constant that depends on c1,a and 7.



In other words for any 0 < v < a we can prove 7?7 by proving ?? for a sufficiently small
0. We will prove this later. Pick 0 < 3 < 1 and apply this to ?? with ¢(r) = fBr(xO) |Vu|?
and y =n — 2+ 20 to get
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so u € CP by Morrey’s lemma. |

Now prove lemma’s 1.2 and 1.3.

Lemma 1.2. We wish to show that
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Proof We will prove the first equation. The proof of the second is analogous. Calculate
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Work on the first term. Clearly faBs(m)(u —v)AVu - dS = 0. By Stokes’ theorem we get
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Plugging this into 77 gives
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By a similar calculation to 7?7 we get st(mo) Ay (mo)a(g;iu) (%j =0, and
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Now we need a minilemma, namely that if u,v are n vectors then} . u;jv; < nful[v]. Let
w be the vector with w; = v1 +wv9 + ...+ v, for all 7. Note that
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since the square of the mean is less than or equal to the mean of the square. From this we
get >, juiv; = u-w < |uflw| < nlullv| as expected. Applying this to V(u —v) and Vo
gives
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Finally divide and square to get
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as required. ]
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Lemma 1.3. We will show that if ¢ is a positive and increasing function on R™ and
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for r <7’ and 0 < ¢ < 1 then
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where v = « (1 + %), and cg is a constant depending on 7.
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Proof Choose 7 = 61/% so that § = 7%. Then
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When r = 7Fs this is precisely what we wanted with ¢ = 1. If instead 7Fls < r < 7Fs
then
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which is what we needed. Finally note that by using a small § we can get v as close as we
like to a (though the constant will become nastier). |



