An Improved Gradient Estimate for Harmonic Functions

1 The new gradient estimate

Last lecture we used an improved form of the gradient estimate for harmonic functions.
We will now prove it.

Theorem 1.1 There are dimensional constants ¢ such that
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for all positive harmonic functions u : Ba, — R.

Proof We will prove the result for » = 1 and claim that the general case follows immedi-
ately by scalng. As usual we take a non-negative test function ¢ : Bo — R with ¢ =0 on

OBs. Define v = logu and w = |[Vv[%. Note that Vv = ¥ and Av = M = —w. We
start by bounding A(w¢?) 4+ 2Vv - V(we?) by a quartic polynomial in w1/2¢> Calculate
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by the Bochner formula. Therefore
A(we?) = ¢*Aw+2Ve?h Vw + wAg? (2)
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= 2¢! ( O ) —2¢* < Vw, Vv > +2V¢* - Vw + wAe?. (3)
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Now try to find our quartic bound. Consider

A(weh) +2Vv - V(wg?) = Alwe?) + 2¢*Vo - Vw + 20Vv - Voo (4)



Substitute for A(wg?) from (3) to get
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A(we*) +2Vv - V(we?) = 2¢* < > + 2Vt - Vw +wA¢* + 2wV - Vet (5)

We need to write the second term out in terms of partial derivatives. Calculate
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Use an absorbing inequality to simplify. Let a;; = > 82_25’% and b;; = %%’j. Note that
a?j + 4a;jbi; > —4b?j. Together with (6) we have
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since ¢ and w are both non-negative. Observe that ¢, |V¢|, and A¢ are bounded, so there

are constants ¢y, co, c3 such that
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A(w¢4) + 2V - V(w¢4) > ¢t < ) — cl¢2|Vv|2 + cod?w — 63¢3w|Vv\. (7)

Recall that for any collection of real numbers the average of the squares is greater than
the square of the average. Thus for any matrix A
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Apply this above to give
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and substitute this into (7) ;
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A(we?) + 2V - V(wet) > ¢? (:) — 10?|V|? + c20*w — c30Pw| V. (8)
Observe that Av = —|Vv|? = —w, so we have
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A(wet) +2Vv - V(we?) > ¢ % — c10°w + co*w — e3P w2 (9)

This is the bound we were looking for.
Now apply this. Since ¢ is zero on the boundary of By, ¢*w takes it’s maximum in the
interior. Let z be the maximum. At z, V(¢%w) = 0 and 0 > A(¢*w), so
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This is a quartic polynomial in ¢w'/? with positive leading coefficient. Such polynomials
are positive for large argument, so there is a constant k with |¢(x)(w(z))"/?| < k. Note that
k depends only on the coefficients of the polynomial. The coefficients themselves depend
only on dimension, so k also depends only on dimension. Choose 0 < ¢ < 1. Then
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Finally we choose ¢ to be identically one on Bj, so
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and take square roots to give our result. |

The gradient estimate we proved earlier follows easily from this; this is a stronger
result. As we saw last time the Harnack inequality is also a reasonably straightforward
consequence. The only major annoyance is that we needed u > 0.



