The Heat equation.[t; > to]

We’ve spent a lot of time concentrating on the laplace equation, but there are other
important PDE’s. One example is the heat equation, which we will study in this lecture.
Consider a function u : R™ x R — R of both time and space. The heat equation is

ou
=5 (1)

In this lecture we will prove a gradient estimate and a Harnack inequality for functions
satisfying the heat equation on a torus 7" = S' x S' x --- x S! | since this turns out to be
easier than doing the proof for a ball.
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1 A gradient estimate for a torus
Theorem 1.1 If u is positive and satisfies the heat equation on the cylinder T™ x R then
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Proof For this proof we will use the notation g; = ;. Define f = logu, and calculate
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Also define F' = ¢(|Vf|?> — fi). Note that we actually want to bound £. We need to
estimate (A — %)F . Observe that

AF = t(AVF2 = Af) (3)
2f \?
= 2t<axiaxj) +2t < VAL AF > —tAf (4)
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by Bochner. Recall that, for any matrix A;;, 32, ; A7, > i Au)” (We saw this in lecture

n

10, and it essentially because the average of the square is greater than the square of the

average). Therefore

AF >

2
2t(if)+2t< VAL, Af > —tAf,.

We also have Af = —|Vf|? + fi = —%, SO

2F?
AF > 7—2<VF,Vf> —tA f.
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Now work on F;. Clearly
Fy= |V = fe +t2Vf-Vfo) — tfu.
Note that Af + |V f|? = f;, so

Fy = |V = fi+t@Vf Vi) —UAf+ V)
= VP = fi—tDf
Putting together (6) and (9) we get
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At a maximum of F' we have VF =0, AF <0 and F; = 0. Therefore

Therefore F' < 5. Substituting in for I gives

Vul> w _n
5 <
U U 2t

which is what we wanted. |

2 A Harnack inequality for a torus

()

Now we’ll try to get a Harnack inequality out of this. Pick (x1,¢1) and (x2,t2) with to > ¢4,
and let n(t) = (z2,t2) +t((x1,t1) — (z2,t2)) be the straight line path from one to the other.

Then

1
f(w1,t1) — f(x2,t2) = /0 dfd(:)ds.
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Calculate dfd—(;’) =V f-(x1—x2)+ fe(t1 — t2). By inequality (12)
n 2
filty —t2) < o (t2 = 1) = [VF7(t2 — ta).
Together with (13) we get

n(tg — tl)

57 ds. (14)

1
flar,tr) = flaz,t2) < / IV fllz2 — 1] = [V (2 = t1) +
0
The integrand is a quadratic in |V f|? with negative leading coefficient, so it has a maximum

at |V f] = 2‘?(5;_"’;11'), s0
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We split this up. for the first part
bz — s — 1| \? w2 — 1]
/0 2ty ) 72 11l = <2(t2 - t1)> (fa = t)ds = 40—y (16)

and for the second
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Putting these together we have
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ogu(zy.t1) —logu(ze,x1) < it —h + 5 og » (18)

Taking exponents we get a harnack inequality,



