Lecture 14: A gradient estimate for the heat equation on a
ball.

1 Adapting the proof of the gradient estimate to R"

Last time we proved a gradient estimate for solutions of the heat equation on a torus. In
this lecture we will adapt the argument to prove the same theorem on R™.

Theorem 1.1 Ifu:R™ x [0,00) — R is positive and satisfies the heat equation then
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We will sketch the proof. We work on an interval [0, 7], and note that the result we
want follows immediately from this . Define f =logwu and F' =t (Wu| t). Let ¢ be a
cutoff function on the ball B;(0) with 0 < ¢ < 1 on the interior and ¢ = 0 on the boundary.
We can stretch this to get a cutoff function ¢, on B,(0) by taking ¢.(x) = ¢(z/r) . If
F' is non positive the result is trivially true, so we can assume that ¢,.F has an interior
maximum without loss of generality. At this maximum

d(Z;F) >0, and ¢,VF = —FV¢, (2)
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We'll use these to get a bound on F. Calculate
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We need to estimate some of these. The calculations are very similar to last time. We
start with



AF = m(‘V“'Q_“t) (5)
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2f 1\’
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by Bochner. Calculate Af = %% = % — |VJ§‘2 = —% to get
AF:%( ' )22VF.VftAft- (8)
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Recall the inequality (3 A;4)? < n Y (A4%) for all matrices A from last time, and apply it
to the hessian of f to give

AF = %(Af)z—zva—mft (9)
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We also need an estimate on F;. We have

F,=|Vf? = fi +t(2Vf -V fi) = tfu, (11)

and Af + |Vf|? = fi, so
F o= |VfP= fi+t@2Vf-V) = tAfF+|VIP) (12)
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Putting 4,10 and 13 together we get
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Recall that ¢,VF = —FV¢,, so

F? F F F
oOF 2 1 Vorl?2 Ao,
> F¢T<nt+¢V¢T-Vf—t—2’ (Z;‘ +¢¢> (16)



2 2
Now use an absorbing inequality ‘?)‘ﬁ: g i > —% (gﬁ:) —€ (%) for all € > 0. to show
that
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Vér - Vf > 2|V, = eV fI? (17)
for all € > 0. Consequently
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Let r — oo so that |V¢,| and A¢, tend to zero and ¢, — 1, and get
2F 1
0>F (= -2 2_2). 19
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Finally we let ¢ — 0 and recover
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0> " ( - 1) (20)
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From this we getF’ < n/2 as required.



