Five inequalities for Harmonic functions

In this lecture we will prove five inequalities for harmonic functions.

1 Bounding integrals of Harmonic functions

Proposition 1.1 Let r and s be real numbers with 0 < r < s, and x € R™. There are

constants ¢; such that
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for all functions f that are harmonic on Bgs(x) with Ay, (V f)z+ the averages of f and V f
over By(x) respectively.

Before proving these we will prove another inequality, the mean value inequality.

Proposition 1.2 If f is harmonic on Ba.(x) then
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Proof Pick y € B,(z). By the mean value property (from lecture 1)
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by Cauchy Schwarz. Note that B, (y) C Bar(z), so we can expand the area of integration

to get
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Now we’ll use this to get our first inequality. If » < s < 27 then
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If instead 2r < s then
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by the mean value inequality Therefore
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and the ration of the volumes is (g)n, SO
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for large s as well.

Note that A% = B%Z_A f = 0. Therefore 3 follows immediately from 1. Now we’ll

prove 2. First consider the case 4r < s. Since % is harmonic we can apply the mean value
inequality to get
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Now apply this. By the intermediate value theorem there is y € B,(z) with f(y) = Az .
Pick z € By(x). Clearly |f(z) — f(y)| < |z —ylsupp, (z) [Vf| < 2rsupp, () [V f|. Therefore
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as required. For r < s < 4r we simply note that
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This completes the proof of 2. The final inequality, 4, follows from 2 in exactly the same
way that 3 follows from 1.
We can also prove 1, 2, 3, and 4 for L harmonic operators when L is a uniformly elliptic
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operator taking Lu = Awm. In this case the constants ¢; depend on the operator.
Proofs are omitted.



