Lecture 17: Holder continuity of L-Harmonic operators part I

Over the next few lectures we’ll prove that L harmonic functions are Holder continuous.
We’ll consider operators in divergence form.

1 Operators in divergence form

Theorem 1.1 Let L be a uniformly elliptic operator taking
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with 0 < Av|? < v - (Av) < Ajv|? as usual, and let u be an L harmonic function. Then u
1s Holder continuous.
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Eventually we will prove this via Morrey’s lemma, but we need to do some simplification
first. As before we define
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Given a point g € R™ we can define a new operator L taking
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Note that L is also a uniformly elliptic operator with the same constants A\, A as L. Let v
an L harmonic function with v — u on the boundary of a ball Bs(xg), and define
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The inequality (a + b)? < 2a? + 2b% will be very useful in this proof. To apply Morrey we
need to estimate [ |Vu|?. First calculate
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Work on the last term. We have
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by Cauchy-Scwarz. Therefore we can absorb this into the first term of (8) to get
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Pick s > r and expand the area of integration to get
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Note that L is in the correct form for the inequalities we proved last time to apply, so we
can use them to get
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Similarly we can show
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Now we need to estimate [ |V(u—v)[2. We'll prove a lemma that will be useful next time.

Lemma 1.2 Let ||Al] — AZJ(CCO)H = Susz(Io) ’AU — Alj(l‘o)‘ Then
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and




We will prove only the first of these statements. The proof of the other is very similar.

Proof Calculate
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Work on the first term. Clearly faBS(xo)(u —v)AVu - dS = 0. By Stokes’ theorem we get
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Plugging this into 17 gives
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Finally divide and square to get
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as required. |




