Lecture Two: The Gradient Estimate

1 The Bochner Formula

For an m x m real matrix we can define a norm by taking
2
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In particular, if €2 is some subset of R and u : 2 — R, then we can take the norm of the

Hessian.
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|Hess u|” = g (83;281’]) . (1)

7.]

Using this we can prove the following.

Proposition 1.1 (The Bochner formula). Let u be a real valued function on some open
subset of R™, then

1
5&\Vu|2 =< VAu,Vu > +|Hess ul?, (2)
where < x,y > indicates the usual dot product of x and y.

Proof Proof is by calculation
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= Z 3mj 833] + |Hess u|

= < VAu,Vu>+|Hess ul>. |




2 The Gradient Estimate
We now prove a gradient estimate for harmonic functions.

Theorem 2.1 There are dimensional constants c¢(n) such that

sup [Vl < X sup Jul. 3)
B (x0) T Bor(x0)

for all harmonic functions u on Ba,(x9) C R™

Proof Note that it suffices to check the case xg = 0. Now proceed as follows.

Step 1. Show that a sub-harmonic function on a ball takes it’s maximum on the
boundary. Let p : Bo,(z0) — R be sub-harmonic. Note that A|z|? = 2n, so A(p+e|x]?) > 0
for all € > 0, Therefore, by the maximum principle, p + ¢|x|? has no interior maximum, so
it’s maximum occurs on the boundary. Letting ¢ — 0 we see that p takes its maximum on
the boundary as well.

Step 2. Prove the result for » = 1. Take u harmonic on Bs(0), and introduce a test
function ¢ with ¢ = 0 on the boundary of B(0) and ¢ > 0 on the interior. We will work
with A(¢?|Vu|?), and apply Bochner to simplify. Calculate

A Vul?) = @?AVul? + [VuPA(¢?) +2V(¢%) - V(| Vul?)
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= 2¢%[Hess ul® + 2¢* < VAu, Vu > +|Vul*A(¢?) + SZgb
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Define a;; = ¢$§;j and b;; = 8%88712' We can re-write to get
A(@*|Vul?) = [VuPA(¢%) +2)  (af; + daibiy) - (4)
2%

Note that a?j + 4a;;bi; + 4bgj = (aij + 2b;j)*> > 0. Apply this to (4) to give

NG| Vul?) > |[VulPA¢?) — 8 b, (5)
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or, in our original notation,

AP 2 —82(8%) () + e )

> =8|V [Vul® + A [Vul®. (7)

Observe that A(u?) = 2uAu+2|Vu|? = 2|Vu|? since Au = 0. Let k(n) = |inf g, (o) (—8|V¢|*+
A(@*))], so
A(¢*Vul? + k(n)u?) > 0 on B(0). (8)

By step 1 supp, (o (¢2]Vu|2 + k(n)u?) occurs on the boundary. Furthermore ¢ vanishes on
the boundary, so We get
sup k(n)u® > sup ¢%|Vul?. 9)
3B2(0) By (0)

Let h(n) = infp, (g)¢ > 0 and rearrange to give

k() 2 2
B2 P00 2 SuP, )|Vl (10)

Finally, take square roots to get

supp, (0y|Vul < ¢(n)supp, () |ul (11)
1/2
as required, with ¢(n) = (%) . It is important to note that ¢(n) really is a dimensional
constant: although it depends on a choice of ¢ it doesn’t depend on w.

Step 3. Extend this to general r. If u is harmonic on Bs,(0) define @(z) = u(x/r),
and note that @ is harmonic on By(0). Therefore, by (11),

SUPR, (zo) | V8| < c(n)supp, ()il (12)

SO

supBr(O)r]Vu| < c(n)supg, (o)|ul- (13)
This completes the proof. |



