Lecture 21: The mean value inequality for uniformly elliptic
operators part I

1 The mean value inequality: Iterative argument

In this lecture we will prove a mean value inequality for uniformy elliptic operators in
divergence form . The argument is an iterative one due to De Georgi, Nash, and Moser.
As usual we take L an operator with

0 ou

Lu=—A; —
b 8.%'1 ”895]-

(1)

and Ajv|? < A;jv0; < Alv|? for all vectors v. Let u be a function satisfying u > 0, Lu > 0.
Take z¢ a point, and R a fixed positive number. Let ¢ be a test function on Bg(z¢) which
is zero on the boundary. Clearly
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so, by Stokes’ theorem,
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and, since the first term is non-negative,
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We can simplify this a bit to get
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Apply uniform ellipticity to the right hand side to get
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Now work on the other term. At each point the matrix A defines a good metric, so
Cauchy-Schwarz applies, and we get —gbuAijg—i% < ou (Vo - AV¢)1/2 (Vu - AVou)'/?,
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Use Cauchy-Schwarz again in the form [ fg < (f f2))1/2 (f g2))1/2 to get
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Uniform ellipticity then gives
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so rearrange to get
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This should be familiar, as we proved it on the way to the Cacciopolli inequality in lecture
6. We’ll apply it slightly differently this time. Consider
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Combining this with 11 we get

/ V(6u)f? < k / W2V (14)
Br(zo)

Br(zo)

for a constant k = 2 + 8/\%2. Now we need to use the Sobolev inequality. For Simplicity we
will assume that n > 3, but a similar result holds in the other cases.



Theorem 1.1 Let QQ C R™ with n > 3, and let w be a function with compact support on
Q. Then
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We won’t prove this here. Apply it with w = ¢u (this has compact support because ¢
does) to get
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for some constant ¢.
Define A, = By(z9) N {u > k}, and let |A, ;| be the volume of this set. For any
function f define f; to be the positive part, i.e.

f+ =sup(f,0). (17)

Note that if v is L harmonic then vy is L harmonic almost everywhere, and claim without
proof that everything we’ve done today goes through for the positive part of a harmonic
function as well as for completely harmonic functions. Also pick r» < R, and set
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so that |V¢| = ler on Br(xp), and 0 elsewhere. Note that if u is L-harmonic then u — k

is also L harmonic. Putting all this together we get
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Now we’ll introduce another important inequality: the Holder Inequality.

Theorem 1.2 Let f,g be functions, and p,q real numbers satisfying ;!) + % = 1. Then
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This is simply a generalisation of the Cauchy-Schwarz inequality, which is the case p = g =
n

2. Apply this with p = -"5,¢ = § and any function f on any set {2 to get
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Set f = (u—k)y and Q = A, and we get
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Note that if b < k then A, C A, . Take z € A, . then u(x) > k, and u(x)—h > k—h.
Therefore
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for all A < k. Plugging this back into 26 we get
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Next lecture we will actually do the induction argument.
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