Lecture 22: The mean value inequality for uniformly elliptic
operators part II

1 The mean value inequality: Iterative argument continued

In this lecture we will complete the proof of the mean value inequality. Last time we had
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for all h < k and r < R. Define r, =1+ 27" and k,, = (2 — 27"™)k for some constant k.
Applying the above inequality to 7, Tm+1, km, kma1 gives
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Substituting for 7y, ky, and renaming ¢ = /¢ gives
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Now use induction to show that ¢(n) — 0 as n — oo. Suppose there is some constant
v > 1 with ¢(m) < %. Then
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Note that limr,, = 1, and lim k,,, = 2k so we get
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and conclude that v < 2k on By. Putting in our value for k£ we obtain
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and, writing out ¢(0) and e,
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This is the mean value inequality.



