
Lecture Eight: Maximum principles and gradient estimates


1 The Maximum Principle for more general operators 

Let u : Br Rn be a C2 function, and let L be a uniformly elliptic differential operator →
taking 

� ∂2u 
Lu = Aij (1)

∂xi∂xji,j 

for some real n × n symmetric matrix A with continuously differentiable entries. If x is an 
internal maximum of u then 

�u = 0 and Lu ≤ 0 

at x. When A is the identity matrix this is exactly the maximum principle from lecture 1. 
If not then we pick coordnates at x so that A(x) is diagonal. Since all the eigenvalues of 
A(x) are positive we have 

� ∂2u 
Lu = bi 

∂x2 |(x) (2) 
i i 

for some collection of positive constants bi. Since x is a maximum ∂2 u 
(x) is non­positive 

∂xi 
2 |

for all i, and Lu ≤ 0 as expected. 

2 The gradient estimate for L­harmonic functions 

Recall the gradient estimate 

c(n) 
sup |u|sup |�u| ≤ 

rBr B2r 

for harmonic functions u. We will prove a similar estimate for uniformly elliptic operators. 
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Proposition 2.1 Let L be a uniformly elliptic operator as above, with 

2v≤ v · (Av) ≤ Λλ|v|2 | |

for some real 0 < λ ≤ Λ. There are constants C which depend only on the operator and 
the dimension of the space such that 

C 
sup |u| (3)sup |�u| ≤ 

rBr B2r 

for all L­harmonic functions u on B2r . 

Proof This proof follows essentially the same steps as the proof for the earlier gradient 
estimate from lecture 2, but each step is now more complicated. When constants are 
intrioduced it is important to noctive that they depend only on A, n, λ and Λ. As before 
we will first prove the case r = 1, and then extend to general r. 

Step 1. One key part of the proof in the harmonic case was the Bochner formula. We 
will prove a similar result for L harmonic functions. Calculate 

∂2 ∂ � ∂2
2 = 

u ∂u 
(4)

∂xi∂xj 
|�u|

∂xi 
2 
∂xj ∂xk ∂xk

k � ∂3u ∂u ∂2u ∂2u 
= 2 + . (5)

∂xi∂xj ∂xk ∂xk ∂xj ∂xk ∂xi∂xk
k 

Therefore ⎛ ⎞ � ∂3u ∂u � � ∂2u ∂2u 
= 2 Aij + 2 ⎝ Aij ⎠ . (6)L|�u|2 

∂i∂xj ∂xk ∂xk ∂xj ∂xk ∂xi∂xk
ijk k ij 

∂u Let vk = ∂xk 
. The last term is �vk · 2 by uniform ellipticity. Substituting A�vk ≥ λ|�vk |

in gives � �2� ∂2� ∂3u ∂u u2 Aij + 2λ . (7)L|�u| ≥ 2 
∂xi∂xj ∂xk ∂xk ∂xi∂xk

ijk ik 

Now work on the first term. � ∂3u ∂u � ∂ ∂2u ∂u � ∂Aij ∂2u ∂u 
=Aij 

∂xi∂xj ∂xk ∂xk ∂xk 
Aij 

∂xi∂xj ∂xk 
− 

∂xk ∂xi∂xj ∂xk
ijk ijk ijk � ∂ ∂u u ∂u 

= (Lu) 
∂xk 

− 
� ∂Aij ∂2

∂xk ∂xk ∂xi∂xj ∂xk
k ijk � ∂Aij ∂2u ∂u 

= − 
∂xk ∂xi∂xj ∂xk

ijk 
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since Lu = 0. Together with (7) this gives � �2� ∂Aij ∂2u ∂u � ∂2u
. (8)2 + 2λL|�u| ≥ −2 

∂xk ∂xi∂xj ∂xk ∂xi∂xk
ijk ik 

∂2uLet cij = 
� ∂Aij ∂u and dij = ∂xi∂xj 

. We can re­write (8) as k ∂xk ∂xk 

2 cij dij + 2λ d2 
ij . (9)L|�u| ≥ −2 

ij ij 

Note that 
2 � �2 

λd2 c cij
ij − 2cij dij + ij = √

λ 
−
√

λdij ≥ 0, (10)
λ 

and so 
1 2λd2 cij . (11)ij − 2cij dij ≥ − 
λ 

Apply this to (9) to get 
1 2 cij + λ d2 

ij , (12)L|�u|2 ≥ − 
λ 

ij i,j 

or, in the old notation, � �2 � �21 � � ∂Aij ∂u � ∂2u 
+ λL|�u|2 ≥ − 

λ ∂xk ∂xk ∂xi∂xkij k ik � �2� � ∂21 u ≥ − 
λ 

(�Aij · �u)2 + λ 
∂xi∂xkij ik � �2� � ∂21 2 u ≥ − 

λ 
|�Aij | |�u|2 + λ 

∂xi∂xkij ik ⎛ ⎞ � �2� 
2 + λ 

� ∂2u1 
.≥ − 

λ 
⎝ |�Aij |2⎠ |�u|

∂xi∂xkij ik 

1Pick c1 = supB2r λ ij |�Aij |2 > 0. We have 

� �2 
2 

� ∂2u 
. (13)L|�u| ≥ −c1|�u|2 + λ 

∂xi∂xk
ik 

Step 2. We will also need to estimate 
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� ∂u2 

L(u 2) = Aij 
∂xi∂xji,j 

∂ ∂u 
= Aij 

∂xi 
2u 

∂xj 

∂2u ∂u ∂u 
= 2uAij + 2Aij

∂xi∂xj ∂xj ∂xi 

∂u ∂u 
= 2Aij 

∂xj ∂xi 

since Lu = 0. Now apply uniform ellipticity to get 

2L(u 2) ≥ 2λ|�u| . (14) 

Step 3. Assume r = 1, and pick φ a test function with φ = 0 on ∂B2, and φ > 0 on 
the interior. We need a bound for L(φ2|�u|2). Calculate 

2) = Aij 
∂2(φ2|�u|2) 

(15)L(φ2|�u|
∂xi∂xj 

∂2 2 ∂2φ2 

= φ2Aij 
|�u| 2Aij + 2Aij φ

∂φ ∂|�u|2 

(16)
∂xi∂xj 

+ |�u|
∂xi∂xj ∂xi ∂xj 

u 
= φ2L(|�u|2) + L(φ2)|�u 2 + 4Aij φ

∂u ∂φ ∂2

. (17)|
∂xk ∂xi ∂xj ∂xk 

Note that Lφ2 is bounded on B2, say Lφ2 ≥ c2. Applying this bound together with 
inequality (13) we get 

� �2 
∂2u2 + λφ2 ∂2u 

+ 4Aij φ
∂u ∂φ 

. (18)L(φ2|�u|2) ≥ (c2 − c1φ
2)|�u|

∂xj ∂xk ∂xk ∂xi ∂xj ∂xk 

The function φ2 is also bounded on B2, so we can pick a positive constant c3 such that 
c1 − kφ2 ≥ −c3. Then � �2 

∂2u2 + λφ2 ∂2u 
+ 4Aij φ

∂u ∂φ 
. (19)L(φ2|�u|2) ≥ −c3|�u|

∂xj ∂xk ∂xk ∂xi ∂xj ∂xk 

∂2uNow set γjk = φ∂xj ∂xk 
and δjk 

∂u ∂φ , and rewrite as = Aij ∂xk ∂xi 

2 + λγ2 + 4γjk δjk . (20)ikL(φ2|�u|2) ≥ −c3|�u|

Use an absorbing inequality to show that 
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2 − c4δ
2 (21)jk L(φ2|�u|2) ≥ −c3|�u|

for some positive constant c4. Substitute in for δjk and we have 

� �2� � ∂u ∂φ 22)L(φ2|�u| ≥ −c3|�u| − c4 Aij 
∂xk ∂xi

j.k i �� ∂u ∂φ 
�2 

2 − c4n≥ −c3|�u| Aij 
∂xk ∂xi

j.k i 

since for any collection of real numbers the average of the squares is greater than the 
square of the averages. The functions Aij are bounded on B2, so there is a constant k with 
Aij | ≤ k. Thus |

�� ∂u ∂φ 
�2 

2L(φ2|�u| ≥ −c3|�u| − c4nk2 

∂xk ∂xi 

2) 
j.k i 

2 2 2 ,≥ −c3|�u| − c4n 2k2|�φ| |�u|

and since |�φ 2 is bounded on B2|

2 (22)L(φ2|�u|2) ≥ −c5|�u|

for some constant c5 which depends only on the dimension and L. 
Step 4. Apply the maximum principle. By steps 2 and 3 

2 + 
c5 

u 2) ≥ 0, (23)L(φ2|�u|
2λ 

2 + c5so, by the maximum principle, φ2|�u| u2 has no interior maxima. Therefore it takes 2λ 
it’s maximum on the boundary. We have shown that 

sup(φ2|�u|2 + 
c5 

u 2) = sup(φ2 u 2). (24)
2λ ∂B2 

|�u|2 + 
c5 

2λB2 

Recall that φ is zero on the boundary, and choose it to be identically one on B1. Thus 

2sup |�u| sup(φ2|�u|2 + 
c5 

u 2)≤ 
B1 2λB1 

sup(φ2|�u|2 + 
c5 

u 2)≤ 
B2 2λ 

sup(φ2|�u|2 + 
c5 

u 2)≤ 
∂B2 2λ 
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c5 2sup u≤	
2λ ∂B2 

c5 2sup u .≤ 
2λ B2 

Finally take square roots to obtain 

c5 sup |u|	 (25)sup |�u| ≤ 
2λB1 B2 

as expected. 
step 5. Scale for general r. Assume u is L­harmonic on B2r, and define u�(x) = u(rx). 

Then u� is L harmonic on B2. Plugging u� into (25) we get 

c5 sup |u|	 (26)r sup |�u| ≤ 
2λBr B2r 

as required. 
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