
MATH 18.152 - PROBLEM SET 11

18.152 Introduction to PDEs, Fall 2011 Professor: Jared Speck

Problem Set 11, Due: at the start of class on 12-8-11

I. Let N(q) be an invertible (1 + n)× (1 + n) matrix with entries Nµν(q) that are functions of
a parameter q. We denote the entries of the inverse of N(q) by (N−1)µν(q). Show that

d d
(0.0.1) (N−1)µν = (N−1)µα(N−1)βν Nαβ.

dq
−

dq

def
Hint: Try differentiating the relation N−1(q)N(q) = I with respect to q, where I =
diag(1, 1, · · · , 1) is the (1 + n)× (1 + n) identity matrix.

II. Let A,B be (1 + n)× (1 + n) matrices (with e.g. entries Aµν , 0 ≤ µ, ν ≤ n), and let ‖A‖ be
the matrix norm defined by

(0.0.2) ‖A‖ def
=

√
0≤

∑
.

µ,ν

|Aµν |2
≤n

a) Show that ‖AB‖ ≤ ‖A‖‖B‖. Here, AB is the standard matrix product, which is defined
by

(0.0.3) (AB)µ
def
= AµαB

α
ν ν (Einstein summation convention for α).

Hint: Note that ‖AB‖2 = AµAνBα β
α β νBµ and think about the Cauchy-Schwarz inequality.

def
b) Let I = diag(1, 1, · · · , 1) denote the (1 + n)× (1 + n) identity matrix. Show that there
exists a number δ > 0 such that if ‖A‖ ≤ δ, then

(0.0.4) det(I + A) = I + Aαα + ‖A‖2R(A),

where R is a bounded function of A for 0 < ‖A‖ ≤ def
δ. Above, Aαα = 0≤α≤nA

α
α is the trace

of A.

∑
c) Show that if N is any positive integer, then

(0.0.5) I − AN+1 = (I − A)(I + A+ A2 + · · ·+ AN).

d) Use parts a), b), and c) to show that there exists a number γ > 0 such that if
1

‖A‖ ≤ γ,
then (I −A) is an invertible matrix and (I −A)− can be expanded in a convergent matrix
series as follows:
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∞

(0.0.6) (I − A)−1 = I +
∑

AN .
N=1

Notation: In the next two problems, we use the partial derivative notation

∇ def

µ = ∂
µ , where x = (x0, x1,∂x · · · , xn) denotes standard coordinates on R1+n.

III. Let V : R→ R be a smooth function, and consider the Lagrangian

L def 1
(0.0.7) = − (m−1)αβ∇αφ βφ

2
∇ − V (φ).

Above, φ : R1+n → R is a function on the spacetime R1+n and m−1 = diag(−1, 1, 1, · · · , 1)
is the standard Minkowski metric.
a) Show that (0.0.7) is a coordinate invariant Lagrangian.

b) Show that the Euler-Lagrange equation corresponding to the Lagrangian (0.0.7) is

(0.0.8) �mφ = V ′(φ),

where �
def

m = (m−1)αβ∇α∇β is the standard Minkowski wave operator.

c) Compute the energy-momentum tensor T µν corresponding to the Lagrangian (0.0.7).

d) Directly show that

(0.0.9) ∇ µν
µT = 0, ν = 0, 1, · · · , n

whenever φ is a C2 solution to (0.0.8).

2

Remark 0.0.1. The special case V (φ) = κ φ2 leads to the Klein-Gordon equation. The
2

parameter κ ≥ 0 is known as the mass, so that the standard linear wave equation is the
“massless” Klein-Gordon equation.

IV. Let x = (x0, · · · , xn) denote standard coordinates on R1+n. Let Y : R1+n → R1+n be a
smooth vectorfield. For each sufficiently small |ε| consider the change of coordinates x
implicitly defined by solving the following ODE initial value problem:

d

˜
(0.0.10) x̃µ(ε) = Y µ(x),

dε
(0.0.11) x̃µ(ε = 0) = xµ.

Assume that the inverse Minkowski metric (m−1)µν

˜
= diag(−1, 1, 1, · · · , 1) is invariant under

the change of coordinates x→ x.˜ More precisely, assume that for all small |ε|, we have that

(0.0.12) (m̃−1)µν = (m−1)µν = diag(−1, 1, 1, · · · , 1),

where (m̃−
def def1)µν = Mµ

αM
ν µ

β (m−1)αβ, and Mµ
ν = ∂x̃

ν . The vectorfield Y is said to generate a
∂x

“continuous symmetry” of m−1.
a) Differentiate the relation (0.0.12) with respect to ε and set ε = 0 to deduce that
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(0.0.13) (m−1)αν∇αY
µ + (m−1)µα∇αY

ν = 0.

b)Let K be a compact subset of spacetime with a smooth boundary, and let φ be a C2 solution to
(0.0.8). Let Y be a smooth vectorfield, and assume that (0.0.13) holds for x ∈ K. Revisit the proof
of the theorem from class in which we derived the divergence-free property of the energy-momentum
tensor. In particular, recall that in the proof, we showed that

(0.0.14)

∫
T µν {mαν∇µZ

α +mµα∇νZ
α} d1+nx = 0

K

holds for any smooth vectorfield Z, where T µν is the energy-momentum tensor corresponding to the
Lagrangian (0.0.7). Using (0.0.14) with Z = Y, show that

(0.0.15)

∫
K

∇µ T µνYν d1+nx = 0.

c) Explain how the identity (0.0.15) can

(
be used

)
to derive conserved quantities for C2 solutions

to the Euler-Lagrange equation (0.0.8).

d) Let φ(t, x1, · · · , xn) be a C2 solution to (0.0.7) (note that we are using the alternate notation
def

t = x0). For simplicity, assume that φ(t, ·) is compactly supported for each fixed t. Using (0.0.15)
in the case Y µ = (−1, 0, 0, · · · , 0), prove that the conservation law∫

1
(0.0.16) |∇φ(t, x1, x2, · · · , xn)|2 + V φ(t, x1, x2,

Rn
· · · , xn) dnx

2

=

∫
1 |∇φ(t, x1, x2,

( )
Rn 2

· · · , xn)|2 + V φ(0, x1, x2, · · · , xn) dnx

holds for any t ≥ 0. Above, |∇φ| def2 = (∇tφ)2 + n

( )
j=1(∇jφ)2 is the Euclidean norm of the spacetime

def
gradient of φ, and dnx = dx1dx2 · · · dxn denotes

∑
integration over the spatial variables (x1, x2, · · · , xn).

Remark 0.0.2. This problem shows that “continuous symmetries” (generated by a flow vector-
field Y ) of the Lagrangian generate conserved quantities for solutions to the corresponding Euler-
Lagrange equation. The principle that a symmetry of a differential equation leads to a conservation
law is widely applicable. The original ideas go back to Emmy Noether, who published a theorem
(known as Noether’s theorem) in 1918 containing the first general application of these methods.
The modern point of view, which was established earlier in the course, is to study the properties of

def
the vectorfields of the form Jµ = T µνXν for a larger class of X than the ones that correspond to
exact symmetries. This modern point of view is therefore a descendant of Noether’s theorem.
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