MATH 18.152 - PROBLEM SET 6

18.152 Introduction to PDEs, Fall 2011 Professor: Jared Speck

Problem Set 6, Due: at the start of class on 10-20-11

I. Consider the global Cauchy problem for the wave equation in R :

(0.0.1a) —0%u(t, z) + Au(t,z) = 0, (t,x) € [0,00) x R",
(0.0.1b) u(0,2) = f(z),
(0.0.1c) Owu(0,x) = g(x).

Let the vectorfield J(¢,x) on R*™ be defined as follows:

def

1 1
(0.0.2) J=%J I = (5(0tu)2 + §|Vu|2, —O1udyu, —Ooudyu, - + - —8nu8tu>.

Above, z = (x!,--- ,2™) denotes coordinates on R", Vu aof (Ovu,- -+ ,0yu) is the spatial

gradient of u, and |Vu|? & S (9u)? is the square of its Euclidean length.
a) First show that

(0.0.3) 0.0+ 0.0 =0
i=1
whenever u is a C? solution to (0.0.1a).
b) Then show that if V.= (VO V1 ... V") = (1,0, w? - ,w") € R is any vector with
S (wi)? <1, then

(0.0.4) Vo IES T rve > o
pn=0
Hint: To get started, try using the Cauchy-Schwarz inequality for dot products.
IT. Assume that 0 < ¢ < R, and let p € R" be a fixed point. Let C; . &of {(r,y) € [0,t) x
R" | [y —p| < R—7} C R"™™ be a solid, truncated backwards light cone. Note that the
boundary of the cone consists of 3 pieces: 9C;,.r = BUM,;,.rg UT, where B oo {0} x Br(p)

is the flat base of the truncated cone, 7 < {t} x Br_(p) is the flat top of the truncated

cone, and M, ,.p oo {(r,y) € [0,t) x R" | |[y — p| = R — 7} is the mantle (i.e., the side

boundary) of the truncated cone.
Define the energy of a function u at time ¢ on the solid ball Bg_;(p) by

e of 1
(0.0.5) E%(t; R;p) d:f/ JO(t,x) d"x &of —/ (Opu)® + |Vul* d"z,
Br_(p) 2 JBr i)

1
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and recall that the divergence theorem in R*" implies that

(0.0.6) / 8tJ°+Z(9,~Ji d"xdt:/ N(a)-Jda—/ JOd"a:+/ JOd"z .
CipiR i=1 MR Br(p Br—t(p)

N N J/
- -~

E2(0;R;p) E2(t;R;p)

In (0.0.6), N(o) is the unit outward normal to M, ..

Remark 0.0.1. In the near future, we will discuss the geometry of Minkowski spacetime,
which is intimately connected to the linear wave equation. Our study will lead to a geomet-
rically motivated construction of the vectorfield J and the identity (0.0.6). Alternatively,
the identity (0.0.6) could also be derived by multiplying both sides of equation (0.0.1a) by
—0yu, then integrating by parts and using the divergence theorem.

a) Show that the unit outward normal N(o) to M, g is of the form

(0.0.7) N(o) = %(1,w1(0),w2(0), L w(0),

where " | (w")? = 1. Note that by translational invariance, you may assume that p = 0.

b) With the help of Problem I and (0.0.6) - (0.0.7), show that if u is a C? solution to
(0.0.1a), then

(0.0.8) E*(t; R;p) < E*(0; R; p)
holds for all ¢ with 0 <t < R.

c) Then show that if the functions f(z) and g(z) from (0.0.1b) - (0.0.1c) are both smooth
and vanish outside of the ball Bg,(p) C R, then at each time ¢ > 0, the solution u(t,z) to
(0.0.1a) vanishes outside of the ball Br,1+(p).

d) Finally, under the same assumptions on f and g, let R — oo in (0.0.8) (and also use
additional arguments) to show that the solution u to (0.0.1a) satisfies

1/2
def mn
©009) IVt = V0@l ® ([l 4 1V )

where V; ,u = (Oyu, 0y, - - - , Opu) is the spacetime gradient of u, |V, ,ul def \/(8tu)2 + (Oqu)? 4 -+

and the L? norms in (0.0.9) are taken over the spatial variables only.
III. Let R > 0, and let f(x), g(z) be smooth functions on R that vanish outside of Bg(0) oo
[—R, R]. Let u(t,z) be the corresponding unique solution to the following global Cauchy

problem on R!*! :

(0.0.10a) —Ofu(t,z) + Qoult,x) = 0,
(0.0.10b) u(0,z) = f(z),
(0.0.10c) Owu(0,z) = g(z).

We define the following quantities:

((9nu)2,
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(0.0.11a) P3(t) d:d/ (Opult, x))2 dx, the potential energy
R

(0.0.11b) K*(t) d:ef/ (Opult, x))2 dx, the kinetic energy
R

(0.0.11c¢) E*(t) of P?(t) + K*(t), the total energy.

In Problem II, you used energy methods to prove that E(t) is conserved: E(t) = E(0) for
all ¢ > 0. Now show that if ¢ is large enough, then P?(¢) = K?(t) = 3 E*(t). This is called
the equipartitioning of the energy.
Hint: Try expressing P(t) and K (t) in terms of the null derivatives O,u(t, ) and Osu(t, x)
that we used in the proof of d’Alembert’s formula. If you set up the calculations properly,
then the desired equipartitioning result should boil down to proving that [, (9,u(t, z))(dsu(t, z)) dx =
0 for all large ¢t. In order to prove this latter result, take a close look at the the expressions
for J,u(t, z) and Jsu(t, z) that we derived in terms of f, ¢ during that proof, and make use
of the assumptions on f,g.
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