
MATH 18.152 - PROBLEM SET 7

18.152 Introduction to PDEs, Fall 2011 Professor: Jared Speck

Problem Set 7, Due: at the start of class on 11-3-11

def
I. Let R > 0, and let f(x), g(x) be smooth functions on R3 that vanish outside of BR(0) =

the ball of radius R centered at the origin. Let u(t, x) be the corresponding unique solution
to the following global Cauchy problem on R1+3 :

(0.0.1) −∂2t u(t, x) + ∆u(t, x) = 0,

u(0, x) = f(x),

∂tu(0, x) = g(x).

Show that there exists a constant C > 0 depending onR, supy∈BR(0) |f(y)|, supy f∈BR(0) |∇ (y)|,
and supy∈BR(0)

3

|g(y)|, (but not on t or x) such that |u(t, x)| ≤ C holds for all t
1+t

≥ 0 and all

x ∈ R . Do not try to come up with a very precise estimate for C; be as lazy as you can
while still being correct!

Hint: Estimate the integrals that appear in Kirchhoff’s formula. In particular, this will
require that you estimate how large the surface area of the intersection of ∂Bt(x) with BR(0)
can be. Psychologically, it may be easier to divide the estimates into two cases: t ≤ 2R and
t ≥ 2R.

Remark 0.0.1. This estimate is called a “decay estimate” for the linear wave equation,
and the rate C is sharp in 3 spatial dimensions. In n spatial dimension, it can be shown

1+t

that the sharp decay rate is C
(n 1)/2 (there is no decay when n = 1!). This phenomenon is

(1+t) −

connected to dispersion: the more spatial dimensions there are, the more opportunity that
waves have to spread out. This rate and mechanism of decay are very different than the
ones we encountered in our study of solutions to the heat equation on R1+n.

II. Assume that the matrices Λ and Ω are Lorentz transformations. Recall that this means that

(0.0.2a) ΛTmΛ = m,

(0.0.2b) ΩTmΩ = m,

where mµν = diag(−1, 1, 1, · · · , 1) denotes the Minkowski metric on R1+n, and T denotes
the matrix transpose.
a) Using elementary properties of the determinant, show that |detΛ| = 1.

b) Show that the matrix product ΛΩ is also a Lorentz transformation.

c) Show that the matrix inverse Λ−1 is also a Lorentz transformation.
III. Consider the following “boost linear transformation in the x1 direction” on R1+3 :

1
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 γ −γv 0 0

Λα
µ =  −γv γ 0 0

(0.0.3)  0 0 1 0


0 0 0 1


def

where v ∈ (−1, 1) is a “velocity” and γ =


√

1
2 . Show that Λ is a Lorentz transformation.

1−v

Remark 0.0.2. Analogous boost transformations exist in any number of spatial dimensions.

IV. Let X be a future-directed time-like vector in 1 + n−dimensional Minkowski spacetime,
where mµν = (m−1)µν = diag(−1, 1, 1, · · · , 1). Recall that this means that m(X,X) < 0 and
X0 > 0. Show that there exists a proper Lorentz transformation (“proper” means that its
determinant is equal to 1, rather than −1) Λ such that (ΛX)µ = (c1, 0, 0, 0, · · · , 0) for some
number c1 > 0. This shows that if X is future-directed and timelike, you can always pick a
standard rectangular Minkowskian coordinate system (in which mµν = diag(−1, 1, 1, · · · , 1))
such that X is parallel to the t axis.

Hint: First briefly argue that there exists a product R of spatial rotations (which are
Lorentz transformations) such that (RX)µ = (c1, c2, 0, 0, · · · , 0). Then construct a Lorentz
boost B such that (BRX)µ = (d, 0, 0, 0, · · · , 0). The transformation of interest is therefore
Λ = BR.

V. Let X, Y be future-directed (i.e., X0 > 0, Y 0 > 0) timelike vectors in 1 + n−dimensional
Minkowski spacetime. Recall that by definition, null vectors are vectors L such thatm(L,L) =
0. Show that there exists a pair of future-directed null vectors L,L normalized by m(L,L) =
−2 and positive constants a, b, c, d such that X = aL+ bL, Y = cL+ dL.
Hint: By Problem IV, you can assume that Xµ = (X0, 0, 0, · · · , 0). By performing

a further sequence of spatial rotations R, argue that you can also assume that Y µ =
(Y 0, Y 1, 0, 0, · · · , 0). You can therefore reduce the problem to case of 1 + 1 spacetime di-
mensions, where it is relatively easy (quite easy, in fact!) to explicitly find an L and an
L.
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