
MATH 18.152 - PROBLEM SET 8

18.152 Introduction to PDEs, Fall 2011 Professor: Jared Speck

Problem Set 8, Due: at the start of class on 11-10-11
def

I. Consider the energy-momentum tensor corresponding to the linear wave equation: Tµν =

∂µφ∂νφ −
def1m 1

µν(m
− )αβ∂αφ∂βφ, and assume that |∇t,xφ| =

√
(∂tφ)2 +

∑n 2
i=1(∂iφ) = 0.

2

Here, (m−1)µν = diag(−1, 1, 1, · · · , 1) is the standard Minkowski metric on R1+n. Let X, Y
be future-directed timelike vectors (i.e., m(X,X) < 0,m(Y, Y ) < 0, X0 > 0, and Y 0 > 0).
Show that

def
(0.0.1) T (X, Y ) = TαβX

αY β > 0.

Hint: First show that if L and L are any pair of null vectors normalized by m(L,L) = −2,
then T (L,L) ≥ 0, T (L,L) ≥ 0, T (L,L) ≥ 0, and that at least one of these three must be
non-zero. To prove these facts, it might be helpful to supplement the vectors L and L with

some vectors e(1), · · ·
def

, e(n 1) in order to form a null frame− N = {L,L, e(1), · · · , e(n−1)}; the
calculations will be much easier to do relative to the basis compared to the standard

def

N
basis for R1+n. Recall that N = {L,L, e(1), · · · , e(n 1)} is any basis for R1+n such that−
0 = m(L,L) = m(L,L) = m(L, e(i)) = m(L, e(i)) for 1 ≤ i ≤ n−1, such that m(L,L) = −2,
such that m(e(i), e(j)) = 1 if i = j, and such that m(e(i), e(j)) = 0 if i = j; as we discussed in
class, given any null pair L,L normalized by m(L,L) = −2, there exists such a null frame
N containing L and L. Recall also that (m−1)µν = −1LµLν

2
− 1LµLν + mµν , where mµν

2
is positive definite on span{e(1), · · · , e(n−1)}, mµν vanishes on span{L,L}, and m(L, e(i)) =
m(L, e(i)) = 0 for 1 ≤ i ≤ n− 1.

To tackle the case of general X and Y, use Problem V from last week.

Remark 0.0.1. Inequality (0.0.1) also holds if X, Y are past-directed timelike vectors (i.e.,
m(X,X) < 0,m(Y, Y ) < 0, X0 < 0, and Y 0 < 0).

µ
II. Consider the Morawetz vectorfield K on R1+3 defined by

0
(0.0.2) K = 1 + t2 + (x1)2 + (x2)2 + (x3)2,

j
(0.0.3) K = 2txj, (j = 1, 2, 3).

a) Show that K is future-directed and timelike. Above, (t, x1, x2, x3) are the standard
coordinates on R1+3.

b) Show that

(0.0.4) ∂µKν + ∂νKµ = 4tmµν , (µ, ν = 0, 1, 2, 3),

where mµν denotes the Minkowski metric.
1
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Remark 0.0.2. K is said to be a conformal Killing field of the Minkowski metric because
the right-hand side of (0.0.4) is proportional to mµν .

c) Show that

(0.0.5) mµνT
µν = 0,

def
where T µν = (m−1)µα(m−1)νβTαβ is the energy-momentum tensor from Problem I with its
indices raised. Note that the formula (0.0.5) only holds in 1 + 3 spacetime dimensions.

d) Show that ∂ (K)
µ Jµ = 0 whenever φ is a solution to the linear wave equation

(m−1)µν∂µφ∂νφ = 0, where

(K)Jµ
def

(0.0.6) = −T µνKν .

e) Show that

(K)J0 1
(0.0.7) = 1 + (t+ r)2 (∇ φ)2L + 1 + (t− r)2 (∇ 2

Lφ) + 2 1 + t2 + r2 mµν∂µφ∂νφ .
4

Above, (m−

{
1)

[
µν =

]
−1LµLν 1

[ ] [ ]
m

}
− LµLν + mµν is the standard null decomposition of ( −1)µν

2 2
3

class. In particular, Lµ = (1, x
1

, x
2 3

from , x
1 2

), Lµ = (1,−x ,−x ,−x ), ∇Lφ = ∂tφ + ∂rφ,r r r r r r
∇Lφ = ∂ µν

tφ − ∂rφ, and m ∂µφ∂νφ is the square of the Euclidean norm of the angular
def

derivatives of φ. Here, r = (x1)2 + (x2)2 + (x3)2 denotes the standard spherical coordinate
on R3, and ∂r denotes the
Hint: The following expansions

√
standard radial derivative.

in terms of L and L may be very helpful:

(0.0.8)
µ 1

K =
{

[1 + (r + t)2]Lµ + [1 + (r − t)2]Lµ
}
,

2
(0.0.9)

1
(1, 0, 0, 0) = (Lµ + Lν),

2
(0.0.10)

(K)J0 = T
( 1
K, (L+ L){ 2

1
= [1 + (r + t)2

)
]T
(
L,L

)
+ [1 + (r − t)2]T

(
L,L

)
+
(
[1 + (r + t)2] + [1 + (r − t)2]

)
T
(
L,L

4

)}
.

f) Finally, with the help of the vectorfield (K)Jµ, apply the divergence theorem on an ap-
propriately chosen spacetime region and use the previous results to derive the following
conservation law for smooth solutions to the linear wave equation (m−1)µν∂µφ∂νφ = 0 :
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(0.0.11)∫
1{[

1 + (t+ r)2
]
(∇Lφ(t, x))2 +

[
1 + (t− r)2

]
(∇ 2

Lφ(t, x)) + 2
[
1 + t2 + r2

]
mµν∂µφ(t, x)∂νφ(t, x)

R3

}
d3x

4

=

∫
1{[

1 + r2
]
(∇Lφ(0, x))2 + 1 + r2 (∇ 2 1 + r2Lφ(0, x))2 + mµν∂µφ(0, x)∂νφ(0, x) d3x.

R3 4

For simplicity, at each fixed

[
t, you

]
may assume that

[
there

]
exists an R > 0 such that

}
φ(t, x)

vanishes whenever |x| ≥ R.

Remark 0.0.3. Note that the right-hand side of (0.0.11) can be computed in terms of the
initial data alone. Note also that the different null derivatives of φ appearing on the left-
hand side of (0.0.11) carry different weights. In particular, ∇Lφ and the angular derivatives
of φ have larger weights than ∇Lφ. These larger weights are strongly connected to the
following fact, whose full proof requires additional methods going beyond this course: ∇Lφ
and the angular derivatives of φ decay faster in t compared to ∇Lφ.
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