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18.152 Introduction to PDEs, Fall 2011 Professor: Jared Speck

Class Meeting # 5: The Fundamental Solution for the Heat Equation

1. The Fundamental solution

As we will see, in the case Ω = Rn, we will be able to represent general solutions the inhomoge-
neous heat equation

n

ut −
def

(1.0.1) D∆u = f, ∆ = ∂2i
i=1

in terms of f, the initial data, and a single solution that has

∑
very special properties. This special

solution is called the fundamental solution.

Remark 1.0.1. Note that when Ω = Rn, there are no finite boundary conditions to worry about.
However, we do have to worry about “boundary conditions at ∞.” Roughly speaking, this means
that we have to assume something about the growth rate of the solution as |x| → ∞.

Definition 1.0.1. The fundamental solution ΓD(t, x) to (1.0.1) is defined to be

def 1 |x|2

(1.0.2) Γ t, = 4D( x) e− Dt , t > 0, x
(4πDt)n/

∈ Rn,
2

def
where x = (x1, · · · def

, xn), |x|2 = n
i=1(x

i)2.

Let’s check that ΓD(t, x) solves

∑
(1.0.1) when f = 0 in the next lemma.

Lemma 1.0.1. ΓD(t, x) is a solution to the heat equation (1.0.1) when f = 0 for x ∈ Rn, t > 0.

22 |x|
Proof. We compute that ∂tΓD(t, x) = − 2πDn + 1 |x| e 4Dt .Also, we compute ∂iΓD(t, x) =

(4πDt)n/2+1 (4πDt)n/2 4Dt2
−

2

−
x2πxi | |

2 2π 1 2π(xi)2 | 2x|
4Dt 4Dt

(4πDt)n/2+1 e
− and ∂i ΓD(t, x) = −

(
+ e ,

(4πDt)n/2+1 4Dt (4πDt)n/2+1

)
−

2 |x|2

D∆Γ ( n D
D t, x) =

(
− 2πD 1 2π x

4Dt
n/2+1 +

(
|
n/

|
2+1

)
e− . Lemma 1.0.1

)
now easily follows.

(4πDt) 4Dt (4πDt)
�

Here are a few very important properties of ΓD(t, x).

Lemma 1.0.2. ΓD(t, x) has the following properties:

(1) If x = 0, then limt 0+ ΓD(t, x) = 0→
(2) limt 0+ ΓD(t, 0) =→ ∞
(3)

∫
n ΓD(t, x) dnx = 1 for all t > 0R

Proof. This is a good exercise for you to do on your own. �

As we will see, (1) - (3) suggest that at t = 0, ΓD(0, x) behaves like the “delta distribution
centered at 0.” We’ll make sense of this in the next lemma.

1
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Remark 1.0.2. The delta distribution is sometimes called the “delta function,” but it is not a
function in the usual sense!

So what is the delta distribution?

Definition 1.0.2. The delta distribution δ is an example of a mathematical object called a distri-
bution. It acts on suitable functions φ(x) as follows:

def
(1.0.3) 〈δ, φ〉 = φ(0).

Remark 1.0.3. The notation 〈·, ·〉 is meant to remind you of the L2 inner product

(1.0.4) 〈f, g〉 =

∫
f(x)g(x) dnx.

Rn

The next lemma shows that ΓD(t, x) behaves like the delta distribution as t→ 0+.

Lemma 1.0.3. Suppose that φ(x) is a continuous function on Rn and that there exist constants
a, b ≥ 0 such that

(1.0.5) |φ(x)| ≤ aeb|x|
2

.

Then

(1.0.6) lim

∫
ΓD(t, x)φ(x) dnx = φ(0).

t→0+ Rn

Proof. Using Property (3) of Lemma 1.0.2, we start with the simple inequality

(1.0.7) φ(0) =

∫
ΓD(t, x)φ(0) dnx = ΓD(t, x)φ(x) dnx+ Γ φ(x)) dnD(t, x)(φ(0) x.

Rn R

er,

∫
Rn n

−

Let ε > 0 be any small positive numb and choose a ball B of

∫
radius R centered at 0 such that

|φ(0)− φ(x)| ≤ ε for x ∈ B (this is possible since φ is continuous). Then the last term from above
can be estimated as follows, where Bc denotes the complement of B in Rn :∣∣∫∣∣ ΓD(t, x)(φ(0) ))

n

− φ(x dnx
R

∣∣∣∣ ≤ ∫ ΓD(t, x)
B

|φ(0)− φ(x)| dnx+

∫
ΓD(t, x)

Bc
|φ(0)− φ(x)| dnx

(1.0.8) ≤
∫

ΓD(t, x)ε dnx+ φ(0) ΓD(t, x) dnx+ ΓD(t, x) φ(x) dnx
B

| |
∫
Bc

∫
Bc

| |

≤ ε+ |φ(0)|
∫

Γ d n
D(t, x) nx+ ΓD(t, x) φ(x) d x.

Bc

∫
Bc

| |

We have thus shown that

(1.0.9)
∣∣
φ(0)−

∫∣ ΓD(t, x)φ(x) dnx ≤ ε+ |φ(0)| Γ ) dnD(t, x x+ ΓD(t, x)|φ(x)
R Bc Bc

| dnx.
n

To estimate the final term on the righ

∣∣
t-hand side of

∫
(1.0.8), we take

∫
advantage of the spherical

def
symmetry of Γ(t, x) in x. More precisely

∣
, we introduce the radial variable r = |x| = n

i=1(x
i)2

√∑
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and recall from vector calculus that for spherically symmetric functions, dnx = Cnr
n−1 dr where

Cn > 0 is a constant. Therefore, using the assumed bound |φ(x)| ≤ aebr
2
, we have that

∫(1.0.10)
∞

| |
1 n/2 1 − 2 ∞

2

ΓD(t, x) φ(x) dnx ≤ C ′ n/2

∫
n

nt
− rn−1e−( 4Dt−b)r dr ≤ C 1 ρ

n
′′ bt ρ − e− dρ,

Bc r=R 4D
−

∫
ρ=R
√

1 −b
4Dt

where Cn
′ > 0 and Cn

′′ > 0 are constants. To deduce the second

(
inequalit

)
y in (1.0.10), we have

made the change of variables r = ρ( 1 − b)−1/2 = ρt1/2( 1 − bt)−1/2. Now since R 1
4Dt 4D 4Dt

− b→∞
as t → 0+, it easily follows from the last expression in (1.0.10) that

√
t→ 0+.

The second term on the right-hand side of (1.0.8) can similarly be sho

∫
n

c ΓD(t, x) d x goes to 0 as
B

wn to go to 0 as t→ 0+.
Combining the above arguments, we have thus shown that for any ε > 0,

(1.0.11) lim sup
t→0+

We therefore conclude that

∣∣ ∫∣φ(0)− ΓD(t, x)φ(x) dnx
Rn

∣∣∣ ≤ ε.

(1.0.12) lim
t→0+

as desired.

∣∣∣φ(0)−
∫

ΓD(t, x)φ(x) dnx
Rn

∣∣∣ = 0

�

Remark 1.0.4. Lemma 1.0.3 can be restated as

(1.0.13) lim 〈ΓD(t, ·), φ(·)〉 = 〈δ(·), φ(·)〉 = φ(0).
t→0+

On the left, 〈, 〉 means the integral inner product, whereas in the middle it has the meaning of
(1.0.3). We sometimes restate (1.0.13) as

(1.0.14) lim ΓD(t, x) = δ(x).
t→0+

Let’s summarize the above results.

Proposition 1.0.4 (Properties of ΓD(t, x)). ΓD(t, x) is a solution to the heat equation (1.0.1)
(with f = 0) verifying the initial conditions

(1.0.15) lim ΓD(t, x) = δ(x).
t→0+

1.1. Solving the global Cauchy problem when n = 1. Let’s see how we can use ΓD to solve
the following initial value (aka Cauchy) problem:

(1.1.1) ut −Duxx = 0, (t, x) ∈ (0,∞)× R,
u(0, x) = g(x).

We will make use of an important mathematical operation called convolution.
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Definition 1.1.1. If f and g are two functions on Rn, then we define their convolution f ∗ g to be
the following function on Rn :

(f ∗ def
(1.1.2) g)(x) =

∫
f(y)g(x− y) dny.

Rn

Convolution is an averaging process, in which the function f(x) is replaced by the “average value”
of f(x) relative to the “profile” function g(x).

The convolution operator plays a very important role in many areas of mathematics. Here are
two key properties. First, by making the change of variables z = x− y, dnz = dny in (1.1.2), we see
that

(1.1.3) (f ∗ g)(x) =

∫
f(y)g(x− y) dny =

∫
f(x− z)g(z) dnz = (g ∗ f)(x),

Rn Rn

which implies that convolution is a commutative operation. Next, Fubini’s theorem can be used to
show that

(1.1.4) f ∗ (g ∗ h) = (f ∗ g) ∗ h,

so that ∗ is also associative.

Remark 1.1.1. According to (1.0.3) and (1.1.3),

(1.1.5) (f ∗ δ)(x) = 〈δ(y), f(x− y)〉y = f(x),

so that in the context of convolutions, the δ distribution plays the role of an “identity element.”

The next proposition is a standard fact from analysis. It allows us to differentiate under integrals
under certain assumptions. We will use it in the proof of the next theorem.

Proposition 1.1.1 (Differentiating under the integral). Let I(a, b) be a function on R × R.
Assume that

(1.1.6)

∫
|I(a, b)| da <

R
∞

for all b belonging to a neighborhood of b0 and define

def
(1.1.7) J(b) =

∫
I(a, b) da.

R

Assume that there exists a neighborhood N of b0 such that for almost every1 a, ∂bI(a, b) exists for
b ∈ N . In addition, assume that there exists as function U(a) (defined for almost all a) such that
for b ∈ N , we have that |∂bI(a, b)| ≤ U(a) and such that

1In a measure theory course, you would learn a precise technical definition of “almost every.” For the purposes of
this course, it suffices to know the following fact: if a statement holds for all a except for those values of a belonging
to a countable set, then the statement holds for almost every a. The main point is that the function I(a, b) does not
have to be “well-behaved” at every single value of a; it can have some “bad a spots,” just not too many of them.
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(1.1.8)

∫
U(a) da <∞.

R

Then near J(b) is differentiable near b0, and

(1.1.9) ∂bJ(b) =

∫
∂bI(a, b) da.

R

Remark 1.1.2. An analogous proposition is true for functions I(a, b) defined on Rm × Rn.

Theorem 1.1 (Solving the global Cauchy problem via the fundamental solution). Assume

that g(x) is a continuous function on Rn that verifies the bounds |g(x)| ≤ aeb|x|
2
, where a, b > 0 are

constants. Then there exists a solution u(t, x) to the homogeneous heat equation

(1.1.10) u −D∆u = 0, (t > 0, x ∈ Rn
t ),

u(0, x) = g(x), x ∈ Rn

existing for (t, x) ∈ [0, T )× Rn, where

def 1
(1.1.11) T = .

4Db

Furthermore, u(t, x) can be represented as

(1.1.12) u(t, x) = [g(·) ∗ Γ n
D(t, ·)](x) =

∫
g(y)ΓD(t, x

Rn
− y) d y

1
∫

2
− |x−y|= g(y)e n

4Dt d y.
(4πDt)n/2 Rn

The solution u(t, x) is of regularity C∞
(
(0, 1 )×Rn (i.e., it is infinitely differentiable). Finally,

4Db

for each compact subinterval [0, T ′] ⊂ [0, T ), there exist
compact subinterval) such that

)
constants A,B > 0 (depending on the

|u(t, x)| ≤ AeB|x|
2

(1.1.13)

for all (t, x) ∈ [0, T ′] × Rn. The solution u(t, x) is the unique solution in the class of functions
verifying a bound of the form (1.1.13).

Remark 1.1.3. Note the very important smoothing property of diffusion: the solution to the
heat equation on all of Rn is smooth even if the data are merely continuous.

Remark 1.1.4. The formula (1.1.12) shows that solutions to (1.1.10) propagate with infinite
speed: even if the initial data g(x) have support that is contained within some compact region,
(1.1.12) shows that at any time t > 0, the solution u(t, x) has “spread out over the entire space
Rn.” In contrast, as we will see later in the course, some important PDEs have finite speeds of
propagation (for example, the wave equation).
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Proof. For simplicity, we only give the proof in the case n = 1. The basic strategy of the proof is to
analyze the behavior of ΓD(t, y) in detail.

Let u(t, x) be the function defined by (1.1.12). The argument that follows will show that the right-
hand side of (1.1.12) is finite (and more). In fact, let us first demonstrate the bound (1.1.13). To this
end, let ε > 0 be any positive number. Then using the simple algebraic estimate |2xy| ≤ ε−1x2+εy2,
we deduce the inequality

(1.1.14) |x− y|2 = x2 − 2xy + y2 ≤ (1 + ε−1)x2 + (1 + ε)y2.

Using (1.1.14) and the assumed bound on |g(·)|, we deduce that

(1.1.15) |g(x− y)| ≤ aeb|x−y|
2 ≤ ae(1+ε

−1)b|x|2e(1+ε)b|y|
2

Using (1.1.15) and the fact that
∫

n g(y)ΓD(t, x− y) dy = g o-Rn (x− y)ΓR D(t, y) dy (i.e., that conv
lution is commutative), we have the following estimates:

∫

| −1 2 2

(1.1.16) u(t, x)| ≤
∫
|g(x− y)|Γ (t, y) dy ≤ ae(1+ε )b|x|

∫
e(1+ε)b|yD

| ΓD(t, y) dy
R R

≤ ae(1+ε
−1 1)b|x|2

∫
1√ t−1/2e−

[
−(1+ε)b

4πDt

R 4πD

]
y2 dy

= ae(1+ε
−1 1/2)b|x 2 1√

[ 1| − (1 + ε)bt
]− ∫

2

e−z dz
4πD 4πD ︸R

<

︷︷
∞

≤ Ae(1+ε
−1)b|x|2 ,

︸
where A > 0 is[ an ε−dependen]t constant, and in the next-to-last step, we have made the change of

2 1/2
variables z = 1 − 1/

(1 + ε)b y = t−1/2 1 bt aria
4 πD

− (1 + ε) y. Note that this change of v bles
πDt 4

is valid as long as 0 < t < 1 . Since ε is allowed to be arbitrarily small, we have thus
4πD(1+ε)b

demonstrated an estimate of the form (1.1.13).

[ ]
Let’s now check that the function u(t, x) defined by (1.1.12) is a solution to the heat equation

L def
and also that it takes on the initial conditions g(x). To this end, let = ∂t−D∂2x. We want to show
that Lu(t, x) = 0 for t > 0, x ∈ Rn and that u(t, x) → g(x) as t ↓ 0. Recall that by Proposition
1.0.4, LΓD(t, x) = 0 for t > 0, x ∈ R. For t > 0, x ∈ R, we have that

(1.1.17) Lu(t, x) =

∫ 0

g(y)
︷
LΓD(t,

︸︸
x− y

︷
) dy = 0.

R

To derive (1.1.17), we have used Proposition 1.1.1 to differentiate under the integral; because of
rapid exponential decay of ΓD(·, ·) in its second argument as the argument goes to ∞, one can use
arguments similar to those given in the beginning of this proof to check that the hypotheses of the
proposition are verified.

Similarly, the fact that u ∈ C∞
(
(0, 1 )

4Db
× R

resp

)
can be derived by repeatedly differentiating with

ect to t and x under the integral in (1.1.12).
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Furthermore by (1.0.15) and (1.1.5), we have that

(1.1.18) lim u(t, x) = lim (g( ) ΓD(t, ))(x) = (g δ)(x) = g(x).
t→0+ t→0+

· ∗ · ∗

The question of uniqueness in the class of solutions verifying a bound of the form (1.1.13) is
challenging and will not be addressed here. Instead, with the help of the weak maximum principle,
you will prove a weakened version of the uniqueness result in your homework.

�

In the next theorem, we extend the results of Theorem 1.1 to allow for an inhomogeneous term
f(t, x).

def
Theorem 1.2 (Duhamel’s principle). Let g(x) and T = 1 be as in Theorem 1.1. Also assume

4Db

that f(t, x), ∂if(t, x), and ∂i∂jf(t, x) are continuous, bounded functions on [0, T )×Rn for 1 ≤ i, j ≤
n. Then there exists a unique solution u(t, x) to the inhomogeneous heat equation

(1.1.19) ut −D∆u = f(t, x), (t, x) ∈ (0,∞)× R,
u(0, x) = g(x), x ∈ R

existing for (t, x) ∈ [0, T )× R. Furthermore, u(t, x) can be represented as

t

(1.1.20) u(t, x) = (ΓD(t, ·) ∗ g)(x) + (ΓD(t
0

− s, ·) ∗ f(s, ·))(x) ds.

The solution has the following regularity properties:

∫
u ∈ C0([0, T )× R) ∩ C1,2((0, T )× R).

Proof. A slightly less technical version of this theorem is one of your homework exercises. �

2. Deriving ΓD(t, x)

Let’s backtrack a bit and discuss how one could derive the fundamental solution to the heat
equation

(2.0.21) ∂ n
tu(t, x)−D∆xu(t, x) = 0, (t, x) ∈ [0,∞)× R .

As we will see, the fundamental solution is connected to some important invariance properties
associated to solutions of (2.0.21). These properties are addressed in the next lemma.

Lemma 2.0.2 (Invariance of solutions to the heat equation under translations and par-
abolic dilations). Suppose that u(t, x) is a solution to the heat equation (2.0.21). Let A, t0 ∈ R be
constants, and x0 ∈ Rn. Then the amplified and translated function

u∗
def

(2.0.22) (t, x) = Au(t− t0, x− x0)

is also a solution to (2.0.21).
Similarly, if λ > 0 is a constant, then the amplified, parabolically scaled function

def
(2.0.23) u∗(t, x) = Au(λ2t, λx)

is also a solution.



8 MATH 18.152 COURSE NOTES - CLASS MEETING # 5

Proof. We address only the case (2.0.23), and leave (2.0.22) as a simple exercise. Using the chain
rule, we calculate that if u is a solution to (2.0.21), then

(2.0.24) ∂tu
∗(t, x)−∆u∗(t, x) = λ2A

{
(∂ 2 2
tu)(λ t, λx)− (D∆u)(λ t, λx)

}
= 0.

Thus, u∗ is also a solution. �

We would now like to choose the constant A in (2.0.23) so that the “total thermal energy” of u∗

is equal to the “total thermal energy of” of u.

Definition 2.0.2. We define the total thermal energy T (t) at time t associated to u(t, x) by

T def
(2.0.25) (t) =

∫
u(t, x) dnx.

Rn

It is important to note that for rapidly-spatially decaying solutions to the heat equation, T (t) is
constant.

Lemma 2.0.3. Let u(t, x) ∈ C1,2([0,∞) × Rn) be a solution to the heat equation −∂tu(t, x) +
∆u(t, x) = 0. Assume that at each fixed t, lim x |x|n−1|∇xu(t, x) =|→∞ | 0, uniformly in x. Further-|
more, assume that there exists a function f(x) ≥ 0, not depending on t, such that |∂tu| ≤ f(x) and
such that

∫
n f(x) dnx <∞. Then the total thermal energy of u(t, x) is constant in time:R

(2.0.26) T (t) = T (0).

def
Proof. Let T (t) =

∫
n u(t, x) dnx denote the total thermal energy at time t. The hypotheses onR

ensure that we can differentiate under the integral and use the heat equation:

d
(2.0.27) T (t) =

∫
∂tu(t, x) dnx = ∆u(t, x) dnx = lim ∆u(t, x) dnx,

dt Rn

∫
Rn R→∞

∫
BR(0)

where BR(0) ⊂ Rn denotes the ball of radius R centered at the origin. Then with the help of
the divergence theorem, and recalling that dσ = Rn−1dω along ∂BR(0), where ω denotes angular
coordinates along the unit sphere ∂B1(0), we conclude that

(2.0.28) lim

∫
∆u(t, x) dnx = lim ˆ

R→∞ RBR(0)
→∞

∫
∂BR(0)

∇Nu(t, σ) dσ

= lim

∫
Rn−1∇N̂u(t, Rω) dω

R→∞ ∂B1(0)

=

∫
lim Rn−1∇N̂u(t, Rω) dω =
R∂B1(0)
→∞

∫
0 dω = 0.

∂B1(0)

In the last steps, we have used the following basic fact from analysis: the condition lim x n−1 u(t, x) =|x|→∞ | | |∇x |
0 uniformly in ω allows us to interchange the order of the limit and the integral. �

We now return to the issue of choosing constant A in (2.0.23) so that the total thermal energy of
u∗ is equal to the total thermal energy of of u. Using the change of variables z = λx, and recalling
from multi-variable calculus that dnz = λndnx, we compute that
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(2.0.29)

∫
u∗(t, x) dnx = A

∫
u(D2λ2t, λx) dnx = Aλ−n u(λ2t, z) dnz.

Rn Rn Rn

Observe that that
∫

n u(λ2t, z) dnz is in fact the mass of u. Thus,

∫
we choose A = λn, which resultsR

in

(2.0.30) u∗(t, x) = λnu(D2λ2t, λx).

Motivated by the parabolic scaling result (2.0.23), we now introduce the dimensionless variable

def x
(2.0.31) ζ = √ ,

Dt

where we have used the fact that the constant D has the dimensions of [length2]/[time]. Note that
ζ is invariant under the parabolic scaling t→ λ2t, x→ λx.

We now proceed to derive the fundamental solution. For simplicity, we only consider the case of
1 + 1 spacetime dimensions. We will look for a fundamental solution of the form

1
(2.0.32) ΓD(t, x) = √ V (ζ),

Dt

where V (ζ) is a function that we hope to determine. Admittedly, it is not easy to completely
motivate∫ the fact that ΓD(t, x) should look like (2.0.32). We first note that since we would like to
achieve ΓD(t, x) = 1, the change of variables (2.0.31) leads to the following identity:R

1 =

∫
1 x

(2.0.33) ΓD(t, x) V
R

∫
R
√
Dt

(
√

t

)
dx =

∫
V (ζ) dζ.

D R

Next, since ΓD(t, x) is assumed to solve the heat equation, we calculate that

1 1 1
(2.0.34) 0 = ∂tΓ−∆Γ = − D−1/2t−3/2 V ′′(ζ) + ζV ′(ζ) + V (ζ) .

2 2 2
Therefore, V must be a solution to the following ODE:

{ }

1 1
(2.0.35) V ′′(ζ) + ζV ′(ζ) + V (ζ) = 0.

2 2

Since we want ΓD(t, x) to behave like the δ distribution (at least for small t > 0), we demand that

(2.0.36) V (ζ) ≥ 0.

Furthermore, since we want ΓD(t, x) to rapidly decay as |x| → ∞, we demand that

(2.0.37) V (±∞) = 0.

We also expect that ideally, V (ζ) should be an even function. Furthermore, it is easy to see that if
def

V (ζ) is a solution to (2.0.35), then so is W (ζ) = V (−ζ). Thus, it is reasonable to look for an even
solution. Now for any differentiable even function V (ζ), it necessarily follows that V ′(0) = 0. Thus,
we demand that



10 MATH 18.152 COURSE NOTES - CLASS MEETING # 5

(2.0.38) V ′(0) = 0.

We now note that (2.0.35) can be written in the form

d 1
(2.0.39) (V ′(ζ) + ζV (ζ)) = 0,

dζ 2

which implies that V ′(ζ) + 1ζV (ζ) is constant. By setting ζ = 0 in and using (2.0.38), we see that
2

this constant is 0 :

1
(2.0.40) V ′(ζ) + ζV (ζ) = 0.

2
Now the first-order ODE (2.0.40) can be written in the form

d 1
(2.0.41) lnV (ζ) =

dζ
− ζ,

2

which can be easily integrated as follows:

V (ζ) 1
(2.0.42) ln

(
V (0)

)
= − ζ2,

4

=⇒ V (ζ) = V (0)e−
1 ζ2(2.0.43) 4 .

To find V (0), we use the relation (2.0.33), and the integral identity2

1 =

∫
1 2 2

(2.0.44) V (0)e− ζ
4 dζ = 2V (0)

∫
e−α dα = 2V (0)

√
π.

R ζ=2α R

Therefore, V (0) = √1 , and
4π

1
V (ζ) = √ e−

1 ζ2(2.0.45) 4 .
4π

Finally, from (2.0.32) and (2.0.45), we deduce that

1 2x

(2.0.46) ΓD(t, x) = √ e− 4t

4πt

as desired.

2 def 2 2 2

Let I =
∫
e−x dx. Then I2 =

∫ ∫
e−(x +y ) dx dy, and by switching to polar coordinates, we have thatR R R

I2 = 2π
∞

re−r
2

dr = π. Thus, I =
√
π.

r=0

∫
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