
MATH 18.152 COURSE NOTES - CLASS MEETING # 6

18.152 Introduction to PDEs, Fall 2011 Professor: Jared Speck

Class Meeting # 6: Laplace’s and Poisson’s Equations
We will now study the Laplace and Poisson equations on a domain (i.e. open connected subset)

Ω ⊂ Rn. Recall that

def
∆ = ∑

n

(0.0.1)
i=
∂2
i .

1

The Laplace equation is

(0.0.2) ∆u x 0, x Ω,

while the Poisson equation is the

( )

inhomoge

=

neous equation

∈

(0.0.3) ∆u x f x .

Functions u ∈ C2 Ω verifying (0.0.2) are said
order, linear, constant coefficient PDEs. As in

(

to

) = ( )

( ) be harmonic. (0.0.2) and (0.0.3) are both second
our study of the heat equation, we will need to supply

some kind of boundary conditions to get a well-posed problem. But unlike the heat equation, there
is no “timelike” variable, so there is no “initial condition” to specify !

1. Where does

≡

it come from?

1.1. Basic examples. First example: set ∂tu 0 in the heat equation, and (0.0.2) results. These
solutions are known as steady state solutions.

Second example: We start with Maxwell equations from electrodynamics. The quantities of
interest

●

are

E = (

● = (

E1 t, x, y, z ,E2 t, x, y, z ,E3 t, x, y, z is the electric field

●

B

= (

B

(

1

( ) (

(t, x, y, z),B2(t, x, y, z

)

),B3

(

(

) ( ) (

t, x, y, z is the magnetic induction

●

J J1 t, x, y, z , J2 t, x, y, z , J3 t, x, y, z

))

)

)) is

)

the current density
ρ is the charge density

Maxwell’s equations are

(1.1.1) ∂tE −∇ ×

+

B

(1.1.2) ∂

= J, ∇ ⋅E = ρ,

tB E 0

−

, B 0.

Recall that ∇× is the curl operator,

∇× =

so that e.g. ∇ ×B = (∂yB3

∇ ⋅ =

− ∂zB2, ∂zB1 − ∂xB3, ∂xB2 ∂yB1 .
Let’s look for steady-state solutions with ∂tE ∂tB 0. Then equation (1.1.2) implies that

1

− )

= ≡
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(1.1.3) E 0,

so that by the Poincaré lemma, there exists

∇

a scalar-v

× =

alued function φ(x, y, z) such that

(1.1.4) E(x, y, z) = −∇φ(x, y, z .

The function φ is called

)

∇ ⋅ ∇ =

an electric potential. Plugging (1.1.4) into the second of (1.1.1), and using
the identity φ ∆φ, we deduce that

(1.1.5) ∆φ x, y, z ρ x, y, z .

This is exactly the Poisson equation (0.0.3)

(

with

) = −

inhomog

( )

eneous term f ρ. Thus, Poisson’s
equation is at the heart of electrostatics.

1.2. Connections
( ) = ( ) +

to complex
( )

analysis. Let z x iy (where x, y R) b

=

e

−

a complex number,
and let f z u z iv z be a complex-valued function

b

= +

(where u, v R
to e differentiable at z0 if

∈

∈ ). We recall that f is said

f − f z
→

(z) (

−

0
(1.2.1) lim

z z0 z z0

exists. If the limit exists, we denote it by f

)

′(z0).

(

A fundamen
)

tal result of complex analysis is the following: f is differentiable at z0 x0 iy0

x0, y0 if and only if the real and imaginary parts of f verify the Cauchy-Riemann equations
= +

at z0

≃

(1.2.2) ux(x0, y0

∶

(1.2.3) uy(x0, y0

Differentiating (1.2.2) and using the symmetry

) = ( )

that u x, y and v x, y are C1 near x0, y0 ),

) =

v

−

y x0, y0 ,

vx(x0, y0).

( ) ( ) ( )

of mixed partial derivatives (we are assuming here
we have

def
(1.2.4) ∆u

def
(1.2.5) ∆v

= uxx yy vyx vxy 0,

xx

+ u

= v vyy

=

uy

−

x uxy

=

0.

Thus, the real and imaginary parts of a complex-differ

+ = −

entiable

+ =

function are harmonic!

2. Well-posed Problems

Much like in the case of the heat equation, we are interested in well-posed problems for the Laplace
and Poisson equations. Recall that well-posed problems are problems that i) have a solution; ii)the
solutions are unique; and iii)the solution varies continuously with the data.

ˆLet Ω ⊂ Rn be a domain with a Lipschitz boundary, and let N denote the unit outward normal
vector to ∂Ω. We consider the PDE

(2.0.6) ∆u(x f x , x Ω,

supplemented by some boundary conditions. The following boundary conditions are known to lead
to well-posed problems:

) = ( ) ∈
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(1) Dirichlet data: specify a function g x defined on ∂Ω such that u ∂Ω x g x .
(2) Neumann data: specify a function h x defined on ∂Ω such that N̂u x ∂Ω x h x .
(3) Robin-t

( )

ype data:
>

specify a function

(

h

)

(

x
)

defined on ∂Ω such that

∣

N̂u

(

x

) =

∂Ω

(

x

)

αu ∂Ω x
h x , where α 0 is a constant.

∇ ( )∣ ( ) = ( )

(4) Mixed conditions: for example, we c

(

an

)

divide ∂Ω into two disjoint

∇ (

pieces

)∣ (

∂Ω

)+

S

∣

D

(

S

)

N

=

,
where
( )

SN is relatively open in ∂Ω
∣

, and specify a function g x defined on SD and a function
h x defined on SN such that u SD

x g x , N̂u SN
x
(

h
)

x .

= ∪

(5)
∣

Condi
∞

ecify asymptotic conditions on u x as
x∣→

tions at infinity: When Ω Rn, we can sp
. We will return to this kind

(

of

) =

condition

( ) ∇ ∣ ( )

=

later in the

= (

course.

)

( )

3. Uniqueness via the Energy Method

In this section, we address the question of uniqueness for solutions to the equation (0.0.3), sup-
plemented by suitable boundary conditions. As in the case of the heat equation, we are able to
provide a simple proof based on the energy method.

Theorem 3.1. Let Ω ⊂ Rn be a smooth, bounded domain. Then under Dirichlet, Robin, or mixed
boundary conditions, there is at most one solution of regularity u C2 Ω C1 Ω to the Poisson
equation (0.0.3).

In the case of Neumann conditions, any two solutions can differ

∈

by at

(

most

) ∩

a

(

constant.

)

Proof. If u and v are two solutions to (0.0.3) with the same boundary data, then we can subtract
def

them (aren’t linear PDEs nice?!...) to get a solution w u v to the Poisson equation with 0 data:

(3.0.7) ∆w = 0.

= −

Let’s perform the usual trick of multiplying (3.0.7) by w, integrating over Ω, and integrating by
parts via the divergence theorem:

(3.0.8) 0 = ∫ w∆wdnx = ∫ w∇ ⋅ ∇wdnx
Ω Ω

In the case of Dirichlet data, w ∂Ω 0, so the last term
case, we have that

= −∫ w 2 dnx w N̂wdσ.

∣ =

Ω ∂Ω

in

∣∇

(3.0.8)

∣

v

+

anishes.

∫ ∇

Thus, in the Dirichlet

(3.0.9) w 2 0.
Ω

Thus, ∇w 0 in Ω, and so w is constant in

∫

Ω.

∣∇

Since

∣ =

=

≡

w is 0 on ∂Ω, we have that w 0 in Ω, which
shows that u v in Ω.

Similarly, in the Robin case

≡

(3.0.10) ∫ w∇N̂wdσ = −α∫ w2 dσ
∂Ω ∂

≤ 0,
Ω

which implies that

(3.0.11) ∫ ∣∇w∣
2

b

= 0,
Ω

and we can argue as efore conclude that w 0 in Ω.≡
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Now in the Neumann case, we have that N̂w ∂Ω 0, and we can argue as above to conclude that

w is constant in Ω. But now we can’t say an

∇

ything

∣

ab

=

= +

out the constant, so the best we can conclude
is that u v constant in Ω.

�

4. Mean value properties

Harmonic functions u have some amazing properties. Some of the most important ones are
captured in the following theorem, which shows that the pointwise values of u can be determined
by its average over solid balls or their boundaries.

Theorem
( ) ⊂

4.1 (Mean value properties). Let u x be harmonic in the domain Ω Rn, and let
BR x Ω be a ball of radius R centered at the point

( )

x. Then the following mean value
hold:

⊂

formulas

u(x) =
n

(4.0.12a)
ωnRn ∫BR

1
(4.0.12b) u x

(
u

x)
(y)dny,

where ω n
n is the area of ∂B1 0 R

(

,

) = − ∫ u σ dσ,
n 1

( ) ⊂

ωnR ∂BR x

=

that is, the area

(
of

)
the

( )

boundary of the unit ball in Rn.

Proof. Let’s address the n 2 case only; the proof is similar for other values of n. Let’s also assume
that x is the origin; as we will see, we will be able to treat the case of general x by reducing it to
the origin. We will work with polar coordinates (r, θ)

( ) =

on R2. For a ball of radius r, we have that
the

=

measure

∇ ⋅ =

dσ

∇

corresponding

(

to

)

∂Br 0 is dσ r dθ. Note also that along ∂Br 0 , we have that
ˆ ˆ∂ru u N N̂u, where N σ is the unit normal to ∂Br 0 . For any 0 r R

(

, w

)

e define

( )
def
=

1
∫

1 2π

( )

1 2

g r

≤

π

(4.0.13)

<

2πr ∂Br(0
We now note that since u is continuous

)
u(σ)dσ = ∫ =

ru(r, θ
2

at

)dθ
πr θ 0

=
2π

0, we have that

∫ )dθ.
θ=

u(r, θ
0

(4.0.14) u 0 lim g r .

Thus, we would obtain (4.0.12b) in the case
this. To this

( )

x
end, we calculate that

= ( )

=

r

0

→0+

if we could show that g′(r) = 0. Let’s now show

g′
1 2π 1 2π 1

(4.0.15) r ∂ru r, θ dθ ˆ ˆ σ dσ
2π θ 2π Nu r, θ dθ N u .

0 θ 0 2π σ
∂B1 0

By the divergence

( )

theorem

= ∫

,

=
this last

(

term

) =

is equal

∫ =
to

∇ ( ) = ∫ ( )
∇ ( ) ( )

1
(4.0.16) ∆

2π ∫B1(0)
u(y

But ∆u 0 since u is harmonic, so we have shown that

)d2y.

(4.0.17)

=

g

and we have shown (4.0.12b) for x 0.

′

T

(r) =

=

0,

o prove (4.0.12a), we use polar coordinate integration and (4.0.12b) (in the case x 0) to obtain=
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R R 2π

(4.0.18) u 0 R2 1 1
2 ru 0 dr ru r, θ dθ dr u y d2y.

0 2π 0 θ 0 2π BR 0

We have now shown

( )

(4.0.12a)

/ = ∫

and

(

(4.0.12b)

) =

when

∫

x

∫ =
0.

( ) = ∫ ( )
( )

To
(

obtain
) = (

def
the
)(

corresp
+ ) =

onding formulas for non-zero x, define v y u x y , and note that
∆yv y ∆yu x y 0. Therefore, using what we

=

have already
(

sho
)

wn,
= ( + )

(4.0.19) u(x) =
2

v(0) = ∫
2

( )
v(y)

2
d2y u x y d2y u y d2y,

ω 2
nR2 BR 0 ω2R BR 0 ω 2

2R BR x

which implies (4.0.12a) for general x . We can

=

similarly

∫

o

(
btain

)
(

(4.0.12b)

+ ) =

for general

∫ (
x.

)
( )

�

5. Maximum Principle

Let’s now discuss another amazing property verified by harmonic functions. The property, known
as the strong maximum principle, says that most harmonic functions achieve their maximums and
minimums only on the interior of Ω. The only exceptions are the constant functions.

Theorem 5.1 (Strong Maximum Principle). Let Ω Rn be a domain, and assume that u C Ω
verifies the mean value property (4.0.12a). Then if u achieves its max or min at a point p Ω, then
u is constant on Ω. Therefore, if Ω is bounded and u

⊂

∈ C(Ω) is not constant, then for every

∈ ( )

∈

x ∈ Ω,
we have

(5.0.20) u(x) < maxu y , u x minu y .
y Ω y

the

∈∂ ∂Ω

Proof. W
∈

e give argumen
( ) =

t for the

( )

“min” in the case n

( >

= 2. Supp

)

ose

∈

⊂

that

( )

( )

u achieves its min at a
poin
( )

t p Ω, and that u p m. Let B p Ω be any ball centered at p, and let z be any point in
B p . Choose a small ball Br(z) of radius r centered z with Br(z) ⊂ B

Note
(p).

that by the definition of a min, we have that

(5.0.21) u

Using

(z) ≥m.

the assumption that the mean value property (4.0.12a) holds, we conclude that

(5.0.22)

m =
∣ (

1

)∣
∫ (

u y d2 1
y u y d2y u y d2y

B p B p B p Br z B Br z

=
∣ (

1

)∣
{∣B 2 1

r

)

z

(

u

)

z

=
∣ ( )∣

{∫ ( )
( ) + ∫ /

( )∣ ( ) + ∫ / ( )
u(y)d y} ≥

∣ ( )∣
{∣Br

( )
( ) }

B p B Br z B p

Rearranging inequality (5.0.22), we conclude that

(z)∣u(z) +m(∣B(p)∣ − ∣Br(z)∣)} .

(5.0.23) u

Com

(z) ≤m.

bining (5.0.21) and (5.0.23), we conclude that

(5.0.24) u(x) =m
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holds for all points x ∈ B(p). Therefore, u is locally
(

constan
) =

t at any point where it achieves its min.
Since Ω is open and connected, we conclude that u x m for all x

The next corollary will allow us to compare the size

∈ Ω.
�

of two solutions to Poisson’s equation if we
have information about the size of the source terms and about the values of the solutions on ∂Ω.
The proof is based on Theorem 5.1.

Corollary 5.0.1. Let Ω

(5.0.25)

⊂ Rn be a bounded domain and let f

∆u 0, x Ω,

∈ C(Ω). Then the PDE

u x f x , x ∂Ω,

has at most one solution u 2

= ∈

f C Ω

{

C Ω . Furthermore, if uf and ug are the solutions corre-

sponding to the data f, g C Ω , then

( ) = ( ) ∈

(1) (Comparison Pr

∈ ( ) ∩ ( )

∈

inciple

( )

) If f

(2) (Stability Estimate) For any x

≥ g on

>

∂Ω and f ≠ g, then

uf x u

∈

uf ug in Ω.

Ω, we have that

g x max f y g y .
y ∂Ω

Proof. We first prove the Comparison

∣ ( ) −

Principle.

( )∣ ≤

Let

∈
∣

w

( )

u

−

f

(

ug

)∣

. Then by subtracting the PDEs,
we see that w solves

= −

{
∆w

(5.0.26)
u x

Since w is harmonic, since f x g x

= ∈

not constant and that for every x

(

Ω,

) =

0,
f(x) − g

0 on ∂Ω

( )

x

≥ ,

≥

Ω,

( ) − ( )

x 0, x ∂Ω,

∈

and since
w

∈

f ≠ g, Theorem 5.1 implies that w is
e have

(5.0.27) w(x) > max
∈

f(y) − g y 0.
y ∂Ω

This proves the Comparison Principle.
For the Stability Estimate, we perform a similar argumen

( ) ≥

t for both ±w, which leads to the
estimates

(5.0.28) w(x) > −max f y g y ,

− ( ) > −

y∈∂Ω

(5.0.29) w x max

∣

∈
∣f

(

y
y ∂Ω

) −

g

(

y

)∣

.

Combining (5.0.28) and (5.0.29), we deduce the Stabilit

( )

y

−

Estimate.

( )∣

The “at most one” statemen
=

t of the corollary now follows directly from applying the Stability
Estimate to w in the case f g. �
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