MATH 18.152 COURSE NOTES - CLASS MEETING # 9

Theorem

18.152 Introduction to PDEs, Fall 2011 Professor: Jared Speck

Class Meeting # 9: Poisson’s Formula, Harnack’s Inequality, and Liouville’s

1. REPRESENTATION FORMULA FOR SOLUTIONS TO P0OISSON’S EQUATION

We now derive our main representation formula for solution’s to Poisson’s equation on a domain

Q.

Theorem 1.1 (Representation formula for solutions to the boundary value Poisson
equation). Let Q be a domain with a smooth boundary, and assume that f € C?(Q2) and g € C(952).

Then the unique solution u e C2(Q)nC(Q) to

(1.0.1) Au(z) = f(z), reQcR”
U(I) =g(l’), x € 0f2.

can be represented as

(1.0:2) u@) = [ G dy+ [ 9(0) Vy)Glao) do

Poisson kernel
where G(x,y) is the Green function for €.

Proof. Applying the Representation formula for u Proposition, we have that

(103)  u@)= [ @-pi@dy- [ o@-0)Vgue)do+ [ g(0)V5, 0@ -0)do
Recall also that

(104) G([B,y)zq)(l'—y)—¢(ﬂf,y),

where

(1.0.5) Ayo(x,y) =0, x €,
and

(1.0.6) G(z,0) =0 when z € Q and o € 0S2.

The expression ([1.0.3) is not very useful since don’t know the value of V,yu(o) along 9. To
fix this, we will use Green’s identity. Applying Green’s identity to the functions u(y) and ¢(x,y),

and recalling that Ay¢(x,y) =0 for each fixed x € 2, we have that
1
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Au(y) P(z-0) u(o)
— ——— —
(10.7) 0= [ o) Fw) y- [ o(w.0)Vyu(@)do+ [ (o) Vgo(@.0)do

Subtracting ((1.0.7) from (1.0.3]), and using (1.0.4), we deduce the formula ((1.0.2)).

2. PoissoN’s FORMULA

Let’s compute the Green function G(z,y) and Poisson kernel P(z,0) €' v G(z,0) from

in the case that Q %' Br(0) c R3 is a ball of radius R centered at the origin. We'll use a techmque

called the method of images that works for special domains.

Warning 2.0.1. Brace yourself for a bunch of tedious computations that at the end of the day will
lead to a very nice expression.

The basic idea is to hope that ¢(z,y) from the decomposition G(z,y) = ®(z-y) - ¢(z,y), where
¢(x,y) is viewed as a function of z that depends on the parameter y, is equal to the Newtonian
potential generated by some “imaginary charge” ¢ placed at a point z* € B%(0). To ensure that
G(z,0)=0 when o € 9Br(0), g and x* have to be chosen so that along the boundary {y € R3 | |y| =
R}, ¢(x,y) = 47r|$ ;- In a nutshell, we guess that

1 q
2.0.8 Gz y) = - s ,
( ) (,9) Amlx —y|  Amlxr -y
—_——
o(z,y)?

and we try to solve for ¢ and x* so that G(z,y) vanishes when |y| =
Remark 2.0.1. Note that A —f— | ' — =, which is one of the conditions necessary for constructing
G(z,y).

By the definition of G(z,y), we must have G(x,y) = 0 when |y| = R, which implies that

1 B q

2.0.9 = .
( ) Arlx —y| 4wz -y

Simple algebra then leads to

(2.0.10) |2 =y = ¢*|x - y)*.
When |y| = R, we use ) to compute that
(2.0.11) Ix’“l2 22" y+R2 2" =y = ¢lr - y® = (|2 - 22 -y + R?),

where - denotes the Euclidean dot product. Then performing simple algebra, it follows from (2.0.11))
that

(2.0.12) |z*)? + R* = ¢*(R* + |z*) = 2y - (2™ - ¢*).

Now since the left-hand side of (2.0.12) does not depend on y, it must be the case that the
right-hand side is always 0. This implies that x* = ¢?z, and also leads to the equation
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(2.0.13) ¢*lz]? - *(R* + |z|*) + R* = 0.
Solving (|2.0.13)) for ¢, we finally have that

R
(2.0.14) qg=—,
]
. R
Therefore,
1 R
(2016) ¢($7y) =0 2 5
A ||| By -y
1
2.0.17 0.y) = ——
( ) 9(0,9) =

where we took a limit as x - 0 in (2.0.16)) to derive (2.0.17)).
Next, using ([2.0.8)), we have

1 1 R
2.0.18 G(z,y) =- +— : x #0,
( ) Arlx —y| 4w |m||%x—y|
(2.0.19) G(0,y) = ——— 4
o = Arly|  4mR
For future use, we also compute that
x—y 1 R z*-y
2.0.20 G - J L - I
(2020 Vo) ==y I el P
Now when ¢ € 0Br(0), (2.0.10) and (2.0.14]) imply that
R
(2.0.21) |z* —o| = —|x - o]
]
Therefore, using ([2.0.20)) and (2.0.21)), we compute that
R2
-0 L |z|? 2* -0 -0 1 |z|? gp®— 0
2.0.22 Glro)=——t"0 210 __ A =i
( ) VoG(z,0) Al - of? " in R? |t -0  Amlz -0 4n R? |v-o)3

T (i- @)
Al - of? R/
Using (2.0.22) and the fact that N (o) = +0, we deduce

R?-|z)? 1
4R |z -0l

(2.0.23) Vi G(z,0) ©v,G(x,0) - N(o) =
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Remark 2.0.2. If the ball were centered at the point p € R3 instead of the origin, then the formula
(2.0.23]) would be replaced with

R —|z-pP 1

def $

(2.0.24) Vi Gz, 0) = VoG(z,0) - N(o) =~ TR i-of

Let’s summarize this by stating a lemma.

Lemma 2.0.1. The Green function for a ball Br(p) c R3 is
1 1 R

(2.0.25a) G(z,y) =- +— - , T #p,

Al —y| A |z - p|| B (2 - p) - (y - )|

1 1

2.0.25b G =- + .

Furthermore, if x € Br(p) and o € 0Bg(p), then

R —|z-pP 1
AR |v -0

(2.0.25¢) Vi G(z,0) =

We can now easily derive a representation formula for solutions to the Laplace equation on a ball.

Theorem 2.1 (Poisson’s formula). Let Br(p) ¢ R3 be a ball of radius R centered at p =
(p',p?,p?), and let x = (xlivz,x?’) denote a point in R3. Let g € C(OBgr(p)). Then the unique
solution u € C2(Bg(p)) n C(Br(p)) of the PDE

Au(z) =0,  xe€Bg(p),
(2.0.26) { w(z) = g(z), xeaBg(p),

can be represented using the Poisson formula:

B2 —|r - pP? 9(o)
2.0.27 = f .
( ) u(@) AT R dBr(p) |r — o

Remark 2.0.3. In n dimensions, the formula ([2.0.27) gets replaced with

(2.0.28) N Pt Ll fa 904,

wn R Br(p) |x — o|"

where as usual, w, is the surface area of the unit ball in R".

Proof. The identity (2.0.27)) follows immediately from Theorem and Lemma [2.0.1] O

3. HARNACK’S INEQUALITY

We will now use some of our tools to prove a famous inequality for Harmonic functions. The
theorem provides some estimates that place limitations on how slow/fast harmonic functions are
allowed to grow.
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Theorem 3.1 (Harnack’s inequality). Let Br(0) ¢ R™ be the ball of radius R cenlered at the
origin, and let u € C*(Br(0)) n C(Br(0)) be the unique solution to (2.0.26). Assume that u is
non-negative on Br(0). Then for any x € Br(0), we have that

R2(R - ) R2(R + |z])
————u(0) < u(xr) < —————>u(0).
(R +|a])t (R = |af)
Proof. We’'ll do the proof for n = 3. The basic idea is to combine the Poisson representation formula
with simple inequalities and the mean value property. By Theorem [2.1], we have that

(3.0.30) S it f 9(0)

47rR 0Br(0) |T — a|3

By the triangle inequality, for o € 9Br(0) (i.e. |o| = R), we have that |z| - R < |z - 0| < |z| + R.
Applying the first inequality to (3.0.30)), and using the non-negativity of g, we deduce that

(3.0.29)

R+|x| 1

3.0.31 <
( ) u(w) < - |x|? 47 R JoBr(0) g

(0)do.

Now recall that by the mean value property, we have that

1
do.
47 R? faBR(O)g(U) 7
Thus, combining ((3.0.31]) and (3.0.32)), we have that

R(R+ls])
Ty O

which implies one of the inequalities in (3.0.29). The other one can be proved similarly using the
remaining triangle inequality.

(3.0.32) u(0) =

(3.0.33) u(z) <

O

We now prove a famous consequence of Harnack’s inequality. The statement is also often proved
in introductory courses in complex analysis, and it plays a central role in some proofs of the
fundamental theorem of algebra.

Corollary 3.0.2 (Liouville’s theorem). Suppose that w € C?(R") is harmonic on R™. Assume
that there exists a constant M such that uw(x) > M for all x € R, or such that u(x) < M for all
x € R". Then u is a constant-valued function.

Proof. We first consider the case that u(z) > M. Let v o+ |M|. Observe that v > 0 is harmonic

and verifies the hypotheses of Theorem (3.1} - Thus, by m, if x e R"® and R is sufficiently large,
we have that

R2(R~ o) Rl
(R +[zf) (R—|amt 7

Allowing R — oo in (3.0.34)), we conclude that v(z) = v(0). Thus, v is a constant-valued function
(and therefore u is t00).

(3.0.34) v(0) <wv(x) <
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To handle the case u(x) < M, we simply consider the function w(x) def —u(zx) + |M| in place of

v(x), and we argue as above.
U
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