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18.152 Introduction to PDEs, Fall 2011 Professor: Jared Speck

Class Meeting # 10: Introduction to the Wave Equation

1. What is the

(
wa

)
ve equation?

The standard wave equation for a function u t, x (where t ∈ R, x

1

∈ Rn) is

(1.0.1) ∂2
c t u ∆u 0.
2

(1.0.1) is second order and linear. The constan

−

t

+

c 0

=

is called the speed (this terminology will be
length

justified as

→
our

∞
course progresses), and it has dimensions

>
of . Note that heuristically speaking,time

if we let c , then (1.0.1) becomes Laplace’s equation. However, as we will see, in order to have
a well-posed problem for (1.0.1), we will need to specify Cauchy (i.e. initial data) for u and also
∂tu. The fact that we need to specify Cauchy data is in stark contrast to Laplace’s equation, but
is analogous to the heat equation. The fact that we need to specify two pieces of Cauchy data is
connected to the fact that the wave equation is second order in time.

2. Where does it come from?

Equation (1.0.1) arises in an incredible variety of physical contexts, especially those involving
disturbances that propagate at a finite speed. Let’s discuss how the wave equation arises as an
approximation to the equations of fluid mechanics. For simplicity, let’s only discuss the case of 1
spatial dimension. The

+
equations of fluid mechanics, which are known as the Euler equations, take

the following form in 1 1 dimensions:

(2.0.2a) ∂tρ +
( ) +

∂x ρv 0,

(2.0.2b) ∂ 2

( )
t ρv

(
∂

)
x

(
ρv

) =
∂xp,

where ρ t, x is the fluid mass density, v t, x is the fluid velocity, and p t, x
Equation (2.0.2a) implies the conservation of mass,

(

and

) = −

equation (2.0.2b) is
to the is created by

(
Newton’s

the rate of change of fluid momentum is equal force, which the

) is the pressure.
second law:

pressure gradient
(i.e., the −∂xp term). The Euler equations are highly nonlinear, and we are very far from obtaining
a full understanding of how their solutions behave in general.

A fundamental aspect of fluid mechanics is that the system is not closed because there are not
enough equations. A common method of achieving closure is by choosing an equation of state, which
is a relationship between the fluid variables. This relationship is often empirically determined. A
commonly studied equation of state is

(2.0.3a) p Kργ

where γ > 1 and K > 0 are constants. For future

=
use, we note that under (2.0.3a), we have
1
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(2.0.3b) ∂xp =Kγργ 1∂xρ,

(2.0.3c) ∂2xp =Kγργ
−

−1∂2xρ Kγ γ 1 ργ−2 ∂xρ 2,

Also for future use, we differentiate (2.0.2a)
deduce that

+

with

(

resp

−

ect

)

to

(

t and

)

(2.0.2b) with respect to x to

(2.0.4a)

+ +
∂2t ρ +

+
ρ∂t∂xv v∂t∂xρ ∂tρ∂xv ∂tv∂xρ 0,

(2.0.4b) ρ∂ 2 2
t∂

2
xv v∂t∂xρ ∂tρ∂xv ∂tv∂xρ

+
∂xρ 4

+
ρv∂xv

+
2∂xρ∂xv

=
∂xp.

The theory of acoustics is based on linearizing
(2.0.4b) aro

+

(i.e.

+

throwing

+

awa
equations (2.0.4a) - und the static solutions ρ = ρ̄ = const >

y the nonlinear terms) the
0, v

= −

0, p p̄ const 0.
These static solutions describe a fluid at rest. Let’s assume that we make a small perturbation of
this solution, i.e., that v is small, and that

= = = >

(2.0.5) ρ ρ̄ δ,

where δ t, x
Using

( ) is a small function.
the expansion (2.0.5), we now throw aw

=

ay (with

+

the help of (2.0.3c)) all of the quadratic and
higher-order small terms from (2.0.4a) - (2.0.4b) to obtain the following approximating system
(the quantities that are assumed to be small are v, δ, and all of their partial derivatives):

(2.0.6a) ∂2t δ + ρ∂¯ t∂xv 0,

(2.0.6b) ρ∂¯

=
γ

t∂xv = −Kγρ̄ −1∂2xδ.

Comparing (2.0.6a) and (2.0.6b), we see that δ verifies the following approximating equation

(2.0.7) −∂2t δ +Kγρ̄γ−1∂2xδ 0.

Equation (2.0.7) is a wave equation for the perturbation δ t, x ! It models the propagation of sound
waves. This is the linear theory of acoustics! Note that the

=

speed associated to the equation (2.0.7)
depends on the background density ρ̄

( )

(2.0.8)

∶

c =
√
Kγρ̄γ−1.

When γ > 1, higher background density Ô⇒ faster sound speed propagation.

Remark 2.0.1. For air under “normal” atmospheric conditions, γ = 1.4 is a pretty good model.

3. Some Well-Posed Problems

Recall

●
that well-posed PDEs have three important properties:

Given suitable data, a solution exists.
The solution is unique.
The solution depends continuously on the data.

●
●
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Perhaps the
+

most often studied well-posed problem for the wave equation is the global Cauchy
problem in 1 n spacetime dimensions:

(3.0.9a) ∂2t u t, x ∆xu t, x 0, t, x n

(3.0.9b) u 0, x f x , x

(3.0.9c)

− ( ) +

∂ u

( ) = ( ) ∈ ×

t

We now mention some additional well-posed

(
0, x

) =
g x ,

problems

( )
x

in the

∈
R R ,

Rn,

Rn.

case of 1 1 dimensions. We assume
that u verifies the wave equation for

( ) = ( ) ∈
+

(t, x) ∈ (−∞,

(3.0.10a)

∞) × [0, L] and that Cauchy data is given:

(3.0.10b)

(3.0.10c)

−∂2 2
t u(t, x) + ∂xu(t, x 0, t, x R 0, L

u 0, x

) =
f x ,

(
x

) ∈
0,

×
L

[
,

∂ u 0, x g x , x 0, L .

]

t

(3.0.9a) -

[
,

Unlike in the case of (3.0.9c),

( ) = ( ) ∈ ]
(
because

) = (
of

)
the finiteness

∈ [ ]
of the interval [0, L], we need

to supplement (3.0.10a) - (3.0.10c) with additional conditions in order to generated a well-posed
problem. Here are some well-known ways of generating a well-posed problem; they are essentially
the same as in the case of the heat equation.

(1) Dirichlet data: also specifying u t,0 a t , u t,L b t for t 0
(2) Neumann data: also specifying ∂xu t,0 a t , ∂xu t,L b t for t 0
(3) Robin data: also specifying ∂xu

(

0

) =
( ) = (

0
)

) = ku

( ) (

(t, (t, ), ∂xu

) = ( ) >
(
t,

) = ( ) >
( L) = −ku(t,L) for t > 0, where k > 0

is a constant
(4) Mixed data: e.g. one kind of data at x

4. 1 1 spacetime

= 0, and a different kind at x = L

Let’s consider the wave equation with

+
speed c in 1

(4.0.11) c 2∂2u τ, x ∂2u

+
dimensions

1 dimensions:

− −
τ ( ) + x (τ, x

Let’s first note the following fact: if f, g are any differentiable
def

) = 0.

def
functions, then u x, τ f x

and u(
cτ

x, τ) wave,

(
and

)
= g(x + cτ) solve (4.0.11). The first is called a right-traveling the second is

called a left-traveling
(⋅)

wave.
(
T
⋅)
o visualized wave propagation in 1 1 dimensions, you can

=

imagine

( − )

that the graph of f and g are translated
+

to the right/left at a speed c. This gives a good idea
of what wave motion looks like in 1 1 dimensions. In particular,

+

the amplitudes of the traveling
wave solutions are preserved in time. As we will see, wave propagation in higher dimensions is quite
different. In higher dimensions,

+
the amplitudes decay in time due to the spreading out of the waves.

You will study the case of 1 3 spatial dimension in one of
−
your homework exercises; you will show

that in this case, the amplitudes decay at a rate of order t 1 as t .

Remark 4.0.2. Not all wave solutions in 1

→∞
+ 1 dimensions are traveling waves; see Theorem 4.1.

def
By making the change of variables t =

∶
cτ, we can transform equation (4.0.11) into a wave equation

with speed equal to 1

(4.0.12) ∂2u t, x ∂2t xu t, x 0.− ( ) + ( ) =
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This makes our life a bit easier. Let’s now consider the global Cauchy problem by supplementing
(4.0.12) with the initial data

(4.0.13) u(0, x
As we will see, (4.0.12) + (4.0.13)

) = f(x), ∂tu(0, x) = g(x).
has a unique solution that has a nice representation.

Theorem 4.1 (
(
d’Alem

)
bert’s formula). Assume that

∈
f

unique solution u t, x to (4.0.12) + (4.0.13) satisfies u C2

∈
([

C2( )
∞)

R
×

and g C1 R . Then the
0, R an

∈
) and c be

(
repr
)

esented by
d’Alembert’s formula:

1 1 z

u t, x f x t f x t
2 2

=x+t
(4.0.14) g z dz.

z x t

Remark 4.0.3. For the w

(

ave

)

equation

= ( ( + ) −

−2

+

∂2t u

(

−c + ∂2xu

)) +

0 form

∫ =
ula

−

(4.0.14)

( )

is replaced with

1
u( 1 z x ct

(4.0.15) t, x) = f x ct f x ct

=

g z dz.
2

Remark

( ( + ) + ( − )) +
2c ∫z

= +

=x ct

4.0.4. Equation (4.0.14) illustrates the finite speed of

−
pr
(
op

(

agation

)

property associated
to the wave equation.
“initial data interval”
interval have no effect

)

with the help of energy

{(
More precisely, the value of the solution at t, x is only influenced by the

0, y) ∣ x − t ≤ y ≤ x + t}; changes to the initial data (4.0.13) outside of this
on the solution at t, x . We will reexamine this property later in the course

methods.

Proof. To derive (4.0.14), it is convenient

(

to in

)

troduce a change of variables called null coordinates :

def
(4.0.16) q = t − x,

def
(4.0.17) s t x.

The chain rule implies the following relationships

= +
between partial derivatives:

∂q =
1 1

(4.0.18) ∂t ∂ ∂

=
x , ∂s ∂t x ,

2 2
(4.0.19) ∂t ∂q

(

∂

−

s,

)

∂x

=

∂s

(

∂

+

q.

)

The operators ∂q and ∂s can b

+
e view

= −

( − )
ed as directional derivatives in the t, x Cartesian spacetime

direction .5 1, 1 and .5 1,1 respectively. These null directions, which are sometimes called
characteristic directions, are extremely important. In the future, we will

(

discuss

)

the notion of a
characteristic direction in

(

a general

)

setting.
It is now easy to see that (4.0.12) takes the following form in null coordinates:

(4.0.20) ∂s∂qu 0.

Integrating (4.0.20) with respect to s, we have that

=

(4.0.21) ∂qu =H(q ,
where H is a function of q.

)
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Note that the value of q is the same for the pair of Cartesian spacetime points τ, y and 0, y τ .
Thus, using the initial conditions (4.0.13), we have that

( ) ( − )

(4.0.22) ∂qu(τ, y) = ∂qu(0, y − τ) = (1(∂t − ∂x)u)(0, y − τ) =
1(g(y τ f ′ y τ .

2 2

Similarly, interchanging the partial derivatives in (4.0.20) to deduce ∂s∂

−

qu

) −

0, w

(

e

−

conclude

))

that

( ) = 1
(4.0.23) ∂

=

su τ, y
2
(g(y + τ) + f ′ y τ .

Adding (4.0.22) and (4.0.23), and using (4.0.18), we hav

(

e that

+ ))

∂tu(t, x) =
1

(4.0.24) (f ′(x + t) − f
2

′(x − t

Integrating (4.0.24) in time with respect to t from 0

)

to

+ g(x + t) + g(x − t)).

t, and again using the initial conditions
(4.0.13), we have that

³¹¹¹¹¹¹¹
f

1
u

·
x

(4.0.25) u(t, x
( )

) = (0, x
¹¹¹¹¹¹¹µ
)+

2
(f(x + t) − f(x) + f(x − t) − f(x)) 1

τ
2 ∫

t

g x g x τ dτ

= +

+
τ

1
=0

1 z x t

f x t f x t g z dz,
2 2

( + ) + ( − )

z x t

where
( +

to
)

derive the

=

last

( (

equalit

+ ) +

y,

(

we

−

made

)) +

the

∫ =
in

−
tegration

( )

= −
change
(

of variables z x τ for the
g x τ term, and the change of variables z x τ for the g x ha

=
− τ e

+
) term. W ve thus derived

(4.0.14).
�

Without a lot of additional
+

effort, we can extend Theorem 4.1 to apply to the following initial
+ boundary value PDE in 1 1 dimensions; the result is stated and proved in the next corollary.
This PDE would arise in the study of e.g. the following idealized problem: a description of the
propagation of waves on an infinitely long vibrating string with one end fixed. Furthermore, the
corollary will later play a role in our extension of Theorem 4.1 to the case of 1 3 dimensions.

Corollary 4.0.1. Let f C2 0, , g C1

unique solution to the fol
∈
lowing 1

∞))
1 dimensional

+

([ ∈ ([0,∞ (0
initial
)), and assume that f

+ boundary value pr
)

oblem
=

u

+
g(0) = 0. Then the

(4.0.26a) ∂2t t, x ∂2xu t, x 0, t, x

(4.0.26b) u t,0 0, t 0,

(4.0.26c)

− ( ) +

u

(

0, x

) =

f x ,

(

x

) ∈ [ ∞ × (
) = ∈ [ ∞)

0, )
(

0,

,

∞ ,

( ) = ( ) ∈ (0,∞),

)

(4.0.26d) ∂tu 0, x g x , x 0,

satisfies u 2

)
∈ C

( ) = ( ) ∈ ( ∞
([0,∞) × [0,∞)). Furthermore, it can be represented as

(4.0.27) u(t, x ⎨
⎧⎪⎪⎪) =

1 1 z x t

2(f z x

1

(x + t) + f(x − t)) + 2

1 z

=

x

+
t g z dz, if 0 t

t

2 f x t f t x 2

∫

z

=∣
=
x

− ∣
+
t g

(
z

)
dz, if 0

≤
x

≤
⎪

x,

⎩⎪
⎪ ( ( + ) − ( − )) + ∫ =∣ − ∣ ( ) ≤ ≤ t.
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Proof. The idea is that if we extend u to be odd in x, then we can reduce the problem to the case
of Theorem 4.1. Motivated by this, we define

(4.0.28) ũ( def t, ,
t,

≥

(4.0.29)

) = {
u t, x , if t

≥

def
f x

f

u
−

t , x 0
x

(
(
x)
− )

if 0
≥

,
,

0, x 0,

(̃ ) = { ,
f
(x), if x ≥

− (−
0,

x), if x ≤
( ) ≥

0,

≤

̃ def
g(x) = { g x

(4.0.30)
g

Since u t, x solves (4.0.26a), it follows that

t, x R R with initial data u 0, x f

−

x

(−
, if x 0,

( )
x , if x 0.

( ) ∈ × ̃( ) = (̃ )
u

, ∂

)
̃
t

(
u

)
̃
t,

(
x is a

̃
solution to the wave equation (4.0.12) for

t, x) = g

≤

(x). Thus, by (4.0.14), we have that

ũ(t, x) = 1
(4.0.31) (f̃( 1

x + t) + f̃(x − t)) + ∫
z=x+t

= −
g̃(z)dz.

2 2 z x t

The expression
{( ) ∣

(4.0.27)
≤

now easily follows from considering (4.0.31) separately in the spacetime
regions t, x 0 t x and t, x 0 x t - (4.0.30); note
that in the case {(

, and from the definitions (4.0.28)
t, x
≤ }

t
{(

) ∣0 ≤ ≤ x}, since
) ∣ ≤ ≤ }

g̃ is odd, the part of the integral from x −
[∣ − ∣ +

t
]
to t cancels

and thus the only net contribution comes from the integration interval x t , x
− x

t .
�
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