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18.152 Introduction to PDEs, Fall 2011 Professor: Jared Speck

Class Meeting # 11: The Method of Spherical Means

1. 1 +3 SPACETIME DIMENSIONS AND THE METHOD OF SPHERICAL MEANS

We would now like to derive an analog of d’Alembert’s formula in the physically relevant case
of 1+ 3 dimensions. As we will see, the analogous formula, known as Kirchhoff’s formula, can be
derived through the following steps.

e Given a solution u(t,x) to the 1+ 3 dimensional wave equation, we will define a spherical
average of u centered at x. The average will depend on the averaging radius 7.

e For fixed z, we will show that a slight modification of the average will solve the 1+ 1 dimen-
sional wave equation in the unknowns (¢,7). With the help of our corollary to d’Alembert’s
formula, we will be able to find an explicit formula for this modified function.

e We will take a limit as the averaging goes to 0 in order to recover an expression for u(t,z).

This procedure is known as the method of spherical means. The final result will be stated and
proved as a theorem. Before proving the theorem, we will develop some preliminary estimates. We
will use spherical coordinates (r,6,¢) € [0,00) x [0,7) x [0,27) on R3. Recall that if the spherical
coordinates are centered at the Cartesian point (p',p?, p?), then the standard Cartesian coordinates
(z!, 22, 23) are connected to spherical coordinates by

(1.0.1a) 2! =pt +rsinfcos o,
(1.0.1b) 2% = p® + rsinfsin ¢,
(1.0.1c) 23 = p? +rcosd.

Also recall that the integration measure associated to B,.(0) is do = r2dw, where dw “sin 0dbde.
Here, w represents the angular variables. We will abuse notation by using the symbol w to denote

both the angular coordinates (6, ¢), and alternatively as the corresponding point (sin @ cos ¢, sin 6 sin ¢, cos ) €
0B1(0).

Proposition 1.0.1 (Spherical averages). Let u(t,z) € C?([0,00) x R3) be a solution to the 1+3
dimensional global Cauchy problem

(1.0.2a) ~0%u(t,x) + Au(t,z) = 0, (t,x) €[0,00) x R3,
(1.0.2b) uw(0,7) = f(x), reR3,
(1.0.2¢) (0, ) = g(x), reR3,
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For each r >0, define the spherically averaged quantities

def 1 [ 1 /
1.0.3 U(t,r;zx) = t,o)do = t d
( 2) (t,r52 Arr? 8Br(x)u( o) do = Ar weaBl(O)U( o rw)de,
def 1 /
1.0.3b F(r;x) = d
(10.3b) ) [ He)ds,
def 1 /
1.0.3 G(r; = d
(10.30) e [ oo
and their related modifications
(1.0.4a) U(t,r;x) dzefrU(t,r;x),
(1.0.4Db) F(r; a:) rF('r ),
(1.0.4c) G(r;z) = “ rG(r;m).

Then U(t,r;2) € C2([0,00)x[0, 00)) is a solution to the following initial + boundary-value problem
for the one-dimensional wave equation:

(1.0.5a) QU (t,r;x) + 02U (t, ;) = 0, (t,7) €[0,00) x [0, 00),

(1.0.5b) U(t,0;x) =0, t€[0,00),

(1.0.5¢) U0,r;x) = F(r;z), r € (0, 00),

(1.0.5d) LU (0,7;2) = G(r;z), r € (0,00).
Furthermore,

(1.0.6) Li_r)r& U(t,r;x) =u(t,x).

Proof. Differentiating under the integral on the right-hand side of ([1.0.3al), using the chain rule
relation O, [u(t,z +rw)]dw = (Vu)(t,z + rw) -wdw = T%VN(J)u(t, 0)do (where N(o) is the outward
unit normal to dB,(z)), and applying the divergence theorem, we compute that

1 1
1.0.7 0,U = f ot o) do = f Au(t,y) dy.
( ) 4drr? JoB, () Viulto)do Arr? JB,(x) yult.y) &y

We now derive a version of the fundamental theorem of calculus that will be used in our analysis
below. If h is a continuous function on R3, then using spherical coordinates (p,w) centered at the
fixed point x, we have

(1.0.8

)
arf hd3=8rfr/ 2h(p, dd:f r2h déff h(o) do.
B (x) () dy 0 we@Bl(O)p (pyv + pw) deodp wed By (0) (o4 rw) dw OB, (z) (7)do
Multiplying both sides of ((1.0.7]) by 72 and applying (|1.0.8)), we have that
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1
1.0.9 o, 2aU_—a Aju(t,y) d® =—f Au(t, o) do.
(10.9) (o,U) o e dy= [ Sulto)do
Differentiating under the integral in ([1.0.3al) and using ((1.0.2a)), we have that
(1.0.10) 02U (t,r;x) = ! f O?u(t, o) do = ! / Au(t,o)do.
47r? JoB, () 47r? JoB, ()
Comparing (1.0.9) and (1.0.10]), we see that
2 L 2 2 2
(1.0.11) O;U(t,r;w) = =0.(r0,U) = 0;U(t,r;2) + =0, U(t, ;7).
r r

Multiplying both sides of (1.0.11]) by r and performing simple calculations, we see that

(1.0.12) 83[7"U(t,r; .r)] = 63[7"U(t T; :v)]

We have thus shown that the PDE ([1.0.5a)) is verified by 7%y,

Using ((1.0.2b)) - (1.0.2c) and definitions ({1.0.3b)) - (1.0.3¢)), it is easy to check that the initial
conditions ((1.0.5c|) - (1.0.5d)) hold. Note that you will have to differentiate under the integral in
in order to show that ((1.0.5d)) holds.

The limit follows easily from the right-hand side of (1.0.3a]), since u is continuous.

Finally, the boundary condition then follows easily from multiplying by r before
taking the limit » - 0*.

0

Corollary 1.0.2 (Representation formula for ﬁ(t, r;x)). Under the assumptions of Proposition

for 0 <r<t, we have that

p=r+t

(1.0.13) Ul(t,r; :1:') = TU(t,r,x) = ( (r+t;x)-F(r-t :C)) +—f té(p;:c) dp.

p=—r+

Proof. (1.0.13) follows from ([1.0.5a)) - (1.0.5d)) and the Corollary to d’Alembert’s formula. O
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