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1. 1 + 3 spacetime dimensions and the method of spherical means

W
+

e would now like to derive an analog of d’Alembert’s formula in the physically relevant case
of 1 3 dimensions. As we will see, the analogous formula, known as Kirchhoff’s formula, can be
derived

●

through the following steps.

Given a solution u(t, x) to the 1 + 3 dimensional wave equation, we will define a spherical

●

average of u centered at x. The average will depend on the averaging radius r.
For fixed x, we will show that a slight mo

(

dification
)

of the average will solve the 1 1 dimen-
sional wave equation in the unknowns t, r . With the help of our corollary to d’Alembert’s

●

formula, we will be able to find an explicit formula for this modified function.

+

We will take a limit as the averaging goes to 0 in order to recover an expression for u t, x .

This procedure is known as the method of spherical means. The final result will be stated and
proved as a theorem. Before proving the theorem, we will develop some preliminary estimates.

(

W

)

e
will use spherical coordinates r, θ, φ 0, 0, π 0,2π on R3. Recall that if the spherical

(

coordinates
)

are centered at the
(

Cartesian
) ∈ [

poin
∞)

t p1, p2, p3 , then the standard Cartesian coordinates
x1, x2, x3 are connected to spherical coordinates

× [ ) × [ )

(

by
)

(1.0.1a) x1

(1.0.1b) x2

(1.0.1c) x3

=

=

p1

p2
+

+

r sin θ cosφ,

r sin θ sinφ,

p3 r cos θ.

def
Also recall that the integration measure

=

asso

+

ciated to Br 0 is dσ r2dω, where dω sin θdθdφ.
Here, ω represents the angular

(

variables.
)

We will abuse notation
( )

by
=

using the sym
(

bol to denote
both

=

ω

(

the
)

angular coordinates θ, φ , and alternatively as the corresponding point sin θ cosφ, sin θ sinφ, cos θ
∂B1 0 .

) ∈

Proposition 1.0.1 (Spherical averages). Let u(t, x
dimensional global Cauchy problem

) ∈ C2([0,∞) ×R3) be a solution to the 1 + 3

(1.0.2a) −∂2t u(t, x) +∆u(t, x) =

( ) =

0,

( )

t, x 0, R3,

(1.0.2b) u

(

0, x

) =

f

(

x

)

,

(1.0.2c) g

(

x

∞

∈ R
[

3,

∂tu 0, x x , x

) ∈ ) ×

∈ R3.

1
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For each r > 0, define the spherically averaged quantities

def 1 1
(1.0.3a) U

π

(1.0.3b)

(t, r;x u t, σ dσ
4πr2 ∂Br x 4 ω ∂B1

def 1
F r;x

) = ∫
( )

f

(

σ dσ

)

,

= ∫
∈ (

u
0)

(t, x + rω)dω,

4πr2 ∂Br x

def
(1.0.3c) G

(

1
r;x

) = ∫
( )

g

(

σ

)

dσ,
4πr2 ∂Br x

and their related modific

(

ations

) = ∫
( )

( )

Ũ(t, r;x)
def

(1.0.4a) = rU(

̃

t, r;x),

F r;x

(1.0.4c)

)
def

(1.0.4b)

def
G

(

r;x

= rF (r;x),

rG r;x .

Then Ũ(t, r;x

̃( ) = ( )

) ∈ C2([0,∞)×[0,
for the one-dimensional wave e

∞

quation:
)) is a solution to the following initial + boundary-value problem

(1.0.5a) −∂2t Ũ(t, r;x) + ∂2r Ũ(

̃(

t, r;x

x

= 0, (t, r

(1.0.5b) U t,0;

) ) ∈ [ ∞) × [ ∞)

(1.0.5c) U 0, r;x

) = ∈ [ ∞

0

)

, 0, ,

(1.0.5d) ∂tU

̃(

0, r;x

) =

0, t 0, ,

̃( ) =

F r;x r 0,

G

̃(

̃(

, ,

r;x

) ∈ ( ∞

), r ∈ (0,

)

∞).

Furthermore,

(1.0.6) lim
→

U(t, r;x u t, x .
r 0

Proof. Differen

[ (

tiating

+ )]

under

= (

the

∇ )(

integral

+

on

) ⋅

the righ

) =

t-hand

( )

side of (1.0.3a), using the chain rule

relation ∂r u t, x r

(

ω

)

ˆdω u t, x rω ω dω = 1
r2∇N̂(σ u

unit the
)

t, σ)dσ (where N

normal to ∂Br x ), and applying divergence theorem,

(

we compute that

(σ) is the outward

∂rU =
1

(1.0.7)
πr2 ∫

1
ˆ

4 N σ u t, σ dσ
2∂Br(x)

∇
( )

( ) =
4πr ∫Br(x

We now derive a version of the fundamental theorem of calculus

)

∆ u d3y (t, y) y.

that will be used in our analysis
below. If h is a continuous function on R3, then using spherical coordinates (ρ,ω) centered at the
fixed point x, we have

(1.0.8)
r

def
∂ 3
r ∫

( )

h(y)d y = ∂r ∫ ∫
∈ ( )

ρ2h(ρ, x + ρω)dωdρ = ∫
∈ ( )

r2h r, x rω dω h σ dσ.
Br x 0 ω ∂B1 0 ω ∂B1 0 ∂Br x

Multiplying both sides of (1.0.7) by r2 and applying (1.0.8), we have

(

that

+ ) = ∫
( )

( )
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(1.0.9) ∂ r2
1

r ∂rU ∂r ∆yu t, y d3
1

y ∆u t, σ dσ.
4π Br x 4π ∂Br x

Differentiating under

(

the

)

in

=

tegral

∫

in (1.0.3a)

( )

(

and

)

using

=

(1.0.2a),

∫
(

w

)

e ha

(

ve that

)

∂2tU(
1 1

(1.0.10) t, r;x) = ∂2u t, σ dσ
4πr2 ∫∂Br(

t
x)

( ) =
4πr2

Comparing (1.0.9) and (1.0.10), we see that

∫
(

( σ
r

)dσ.
∂B x)

∆u t,

∂2tU(
1 2

(1.0.11) t, r;x ∂ 2
r r ∂rU ∂2rU t, r;x ∂rU t, r;x .

r2 r
Multiplying both sides of (1.0.11)

) =

by r and

(

performing

) = (

simple

) +

calculations,

( )

we see that

(1.0.12) ∂2t rU t, r;x ∂2r rU t, r;x .

def
We have thus shown that the PDE (1.0.5a)

(

U.
Using

[

is verified by U r
(1.0.2b) - (1.0.2c) and definitions (1.0.3b)

)] = [

- (1.0.3c),

( )]

it is easy to check that the initial
conditions (1.0.5c) - (1.0.5d) hold. Note that you will ha

̃

ve

=

to differentiate under the integral in
(1.0.3a) in order to show that (1.0.5d) holds.

The limit (1.0.6) follows easily from the right-hand side of (1.0.3a), since u is continuous.
Finally, the bou

taking the limit r

Corollary 1.0.2 (

→

ndary condition (1.0.5b) then follows easily from multiplying (1.0.6) by
0+

r before
.

�

1.0.1, for 0

̃( )

(1.0.13)

≤ ≤

Representation formula for U t, r;x ). Under the assumptions of Proposition
r t, we have that

(
ρ

def
Ũ( r;x) =

1 1 r t

t, rU t, r;x) = (F̃ (r + t;x) − F̃ (r − t;x
= +

G ρ;x dρ.
2 2 ρ r t

Proof. (1.0.13) follows from (1.0.5a) - (1.0.5d) and the Corollary to

))

d’Alem

+ ∫
=

b

−

er

+

t’s

̃(

form

)

ula. �
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