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Class Meeting # 12: Kirchhoff’s Formula and Minkowskian Geometry

1. Kirchhoff’s Formula

We are now ready to derive Kirchhoff’s famous formula.

Theorem 1.1 (Kirchhoff’s formula). Assume that f C3 R3 and g C2 R3 . Then the unique
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4πt ∫∂Bt(x

of propagation
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prop
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erty associ-
ated to the linear wave equation. More precisely, the behavior of the solution at the point t, x
is only affected by the initial data in the region 0, y x y t . The fact that this region is
the boundary of a ball rather than a solid ball is known as the sharp Huygens principle. It can
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b
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e
shown that

=
the sharp version of this principle holds
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n

∣ ∣

dimensions
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when n 3 is odd, but not
when n 1 or when n is even. However, even when the sharp version fails, there still is a finite
speed of propagation property; the solution in these cases

+

depends on the data

≥

in the solid ball.

Remark 1.0.2. Note that in Theorem 1.1, we can only guarantee that the solution is one degree less
differentiable than the data. This contrasts to d’Alembert’s formula, in which the 1 1 dimensional
solution was shown to have the same degree of differen

̃
tiability as the data.

Proof. Using the Represen
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tation formula for U(t, r;x) corollary, the differentiab

+

ility of F , and
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term on the right-hand side of (1.0.3) arises from the definition of a partial derivative,

e the G t;x term, we applied the fundamental theorem of calculus (think about both
1
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of these claims own your own!). By the definition of F and G (see the Spherical averages
Proposition), it therefore follows from (1.0.3) that

̃ ̃
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Combining (1.0.4) and (1.0.5), we h
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We have thus shown (1.0.2).
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g σ dσ.
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The fact that u ∈ C2 0,
and using the hypotheses

([
on
∞)
f
×R3) follows from differentiating the integrals in the formula (1.0.2)
and g.

�

Exercise 1.0.1. Show that (1.0.3) holds.

Exercise 1.0.2. Verify that u ∈ C2([0,∞) ×R3), as was claimed at the end of the proof above.

The Linear Wave Equation: A Geometric Point of View
We will now derive some very important results for solutions to the linear wave equation. The

results will exploit interplay between geometry and analysis. Many of the techniques that we will
discuss play a central role in current PDE research.

2. Geometric background

Throughout this lecture, standard rectangula
=

r coordinates on R1 n are denoted by x0, x1, , xn ,
and we often use the alternate notation x0 t. The Minkowski metric

+

on R1 n, which we denote by
m, embodies the Lorentzian geometry at the heart of Einstein’s theory of sp

+

ecial relativit

(

y.

⋯

As w

)

e
will see, this geometry is intimately connected to the linear wave equation. The components of m
takes the following form relative to a standard rectangular coordinate system:

(2.0.7) mµν = (m−1)µν = diag(−1,

W

1
´
,
¹¹¹¹¹¹¹¹¹¹¹¹¹
1
¸
,⋯,

¶
1).

e can view mµν as an n

¹¹¹¹¹¹¹¹¹¹¹¹¹

(1+ )× (
n copies

1+n) matrix of real numbers. It is con
=
v
−
entional

=
to label

=
the first

row and column of mµν starting with “0” rather than “1,” so that m00 1, m22 1, m02 0, etc.
Note that m is symmetric: mµν mνµ.=
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If X is a vector in R1+n with components Xµ (0 ≤ µ ≤ )
( ≤ ≤ )

n , then we define its metric dual to be
the covector with components Xµ 0 µ n defined by

3
def

(2.0.8) Xµ =
α

∑
=

mµαX
α.

0

This is called “lowering the indices of X with m.”
Similarly, given a covector with components Yµ, we can use (m

the indices:

−1) to form a vector Y µ by raising

3
def

(2.0.9) Y µ m
α 0

−1 µαYα.

These notions of duality are called metric

=

duality

∑
=

(

. They

)

are related to, but distinct from (roughly
speaking by a minus sign in the first component), the notion of basis duality commonly introduced
in linear algebra.

We will make use of Einstein’s summation convention, in which we avoid writing many of the
summation signs Σ to reduce the notational clutter. In particular, repeated indices, with one up
and one down, are summed over their ranges. Here is an example:

=
3 3

def
X Y α X Y α def

X Y α def
(2.0.10) m XβY α m XβY β

α α α αβ αβ
α 0 α 0

where the last equality is a

∑

consequence

=

= ∑
=

of the symme

=

try prop

=

erty of m.

=m Y β
αβX

α ,

We now make the following important observation: the linear wave equation −∂2t φ +∆φ
b

= 0 can
e written as

(2.0.11) m−1 αβ∂α∂βφ 0.

We will return to this observation in a bit.
We first provide a standard division of

(

vectors

)

into three

=

classes timelike, spacelike, null.

Definition 2.0.1.

(1) Timelike vectors: m(X,X) def=
( ) >

m Xα
αβ Xβ 0

(2) Spacelike vectors: m X
(3) Null vectors: m

<

(4) Causal v
(X,X

ectors: Timelik

We also will need to know when

)
,
=
X 0

{
0
e vectors {Null vectors

a vector

}∪

is pointing “to

}

wards the future.” This idea is captured
by the next definition.

Definition 2.0.2. A vector X Rn is said to be future-directed if X0 0.

2.1. Lorentz transformations.

∈

Lorentz transformations play a very

>

important role in the study
of the linear wave equation.

Definition 2.1.1. A Lorentz transformation is a linear transformation Λµ
ν (i.e., a matrix) that

def
preserves the form of the Minkowski metric mµν diag 1,1,1, ,1= (− ⋯ ) ∶
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(2.1.1) Λα
µΛβ

νmαβ =mµν .

In standard matrix notation, (2.1.1) reads

(2.1.2) ΛTmΛ =m,

where T denotes the transpose.

By taking
∣
the

(
determinant of each side of (2.1.2) and using the basic properties of the determinant,

we see that det Λ)∣ = 1. If det(Λ) = 1, then Λ is said to be proper or orientation preserving.
It is easy to see that (2.1.1) is equivalent to

(2.1.3) m ΛX,ΛY m X,Y , vectors X,Y R1+n,

def
i.e., that the linear transformation

(

Λ

)

preserv

= (

es the

)

Mink

∀

owskian
=

inner

∈

( )
product. In (2.1.3), m X,Y

m XαY β and ΛX is the vector with components ΛX µ Λµ Xα
αβ α .
Also note that the left-hand side of (2.1.2) is connected to the linear-algebraic notion of

(

change

) =

of basis on R1+n. More precisely, an important way of thinking about Lorentz transformations Λ
is the following: if we have a standard rectangular coordinate system x0, , xn

=
on R1 n, and we

def
change coordinates by defining yµ Λµ α

αx , then relativ

+

=
e to

(−
the new coordinate system y0, , yn ,

the Minkowski metric still has the same form mµν diag 1,1,1, ,1

(

. This

⋯

statemen

)

t
(

would be
false if, for

(
example,

⋯ )
we changed to

⋯

= ( ⋯ )
polar spatial coordinates,

>
or we dilated spacetime coordinates

)

by setting y0, , yn α x0, , xn for some constant α 0. Thus,

⋯

the

)

Lorentz transformations
capture some invariance properties of m under certain special linear coordinate transformations.

Corollary 2.1.1. If X is timelike, and Λ is a Lorentz transformation, then ΛX is also timelike.
Analogous results also hold if X is spacelike or null.

Proof. Corollary 2.1.1 easily follows from Definition 2.0.1 and (2.1.3). �

It can

●
be checked that the Lorentz transformations form a group. In particular:

●
If Λ is a Lorentz transformation, then so is Λ−1.
If Λ and Υ

(
are Loren

) =
tz transformations, then so is their matrix product ΛΥ, which has

components ΛΥ µ def
ν Λµ

αΥα
ν .

The condition (2.1.2) can be viewed as (n + 1
m, there are plenty of redundancies, so that only

)2 scalar equations. However, by the symmetry of
1
2(n + 1)(

( + ) − ( + )( + ) = ( + )
n 2 of the equations are independent.

This leaves n 1 2 1 1
2 n 1 n 2 2n n 1 “free parameters” that determine the matrix Λ.

Thus, the Lorentz transformations form a “1
2n n 1 dimensional”

+ )

group.

It can be shown that the proper Lorentz group is generated1 by the n n 1
2 dimensional subgroup

of spatial rotations, and the n dimensional subgroup

( + )

of proper Lor

(

entz

)( −

b

)

oosts. For the sake of
concreteness let’s focus on the physical case of n 3 spatial dimensions.

Then the rotations about the x3 axis are the set
=

of linear transformations of the form

1By “generated,” we mean that all proper Lorentz transformations can be built out of a finite number of products
of boosts and spatial rotations.
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α

⎡⎢⎢
= ⎢⎢

1 0
θ −

0 0
0 cos sin θ 0

(2.1.4) Λ µ ,
0 sin θ cos θ 0

⎤⎥

0 0 0 1

⎥⎥⎥

where θ ∈ [0,2π is

⎢⎢⎢ ⎥⎥
⎣ ⎥⎦

) the counter-clockwise angle of rotation. Analogous matrices yield the rotations
about the x1 and x2 axes. Note that the X0 (i.e. “time”) coordinate of vectors X is not affected
by such transformations.

The (proper) Lorentz boosts are the famous linear transformations that play a distinguished role
in Einstein’s theory of special relativity. They are sometimes called spacetime rotations, because
they intermix the time component X0 of vectors X with their spatial components X1,X2,⋯,Xn.
The Lorentz boosts in the x1 direction can be expressed as

cosh ζ sinh ζ 0 0

(2.1.5) Λα ⎢ sinh
µ

⎡⎢ −
= ⎢⎢ −
⎢⎢

ζ cosh ζ 0 0

⎢⎣
0 0 1 0

⎤⎥

∈ (−∞ ∞)
0 0 0 1

⎥⎥⎥

where ζ , . Equivalently, (2.1.5) may be parameterized b

⎥⎥
⎦⎥

y

γv

α

⎡⎢ −
= −

γ 0 0
γv γ 0 0

(2.1.6) Λ µ 0 0 1 0
0 0

⎥

⎤⎥⎥⎥⎥⎥

where v 1,1 is a “velocity” and γ

⎢⎢⎢⎢⎢⎢ 0 1 ⎥

is

idea

∈ (− 1
1 v2 . The requirement that v 1 directly connected

to the that in special relativity, material

√⎣ ⎦

−

particles should never “exceed the speed of light.”

2.2. Null frames

)

. It is often the case

=

that the standard basis on

∣ ∣ <

R1 n is not the best basis for
analyzing solutions to the linear wave equation. One of the most useful

+

bases is called a null frame,
which can vary from spacetime point to spacetime point.

Definition 2.2.1. A null frame is a basis for
(

R1+

)
n

=
consisting
−

of vectors L,L, e 1

L and L are null vectors normalized by m L,
( ), , e(n−1) . Here,

span the m−orthogonal complement of span(
L 2, and the e i are orthonormal vectors that
L,L) ∶ m(e i , e j

( )

δij, m

{

L, e i

⋯

m L,e

}

i 0,
for 1 i j n 1. Note that the e i must form a basis

(

for
) (

this
)

complemen
m orthonormal, they must be linearly

( )

independent.

) = ( ( )) = (

−
t; i.e., since they

( )) =
are

In particular,

≤ ≤ ≤ −

we have the decomposition

(2.2.1) R1+n = span L,L span e 1 , , e n 1 ,

where each of the two subspaces in the ab

(
ove

)
direct

⊕
sum

( (
are

) ⋯
m

(

orthogonal.

− ))

Example 2.2.1. A common choice
−

of a null frame is to take Lµ

−
= (1, ω1,⋯

−
, ωn), Lµ = (1,−ω1, , ωn ,

and to take the e(i)
−
to be any m orthonormal basis for the m orthogonal complement of span L,L .

Note that this n 1 dimensional complementary space is spanned by the n non-linearly

⋯

inde-

− )

i

pendent vectors vµ
def def

0, ω1, ω2, , ωi 1,1 ωi, ωi 1, , ωn , 1 i n. Here, ωi
i

(

x
r

)

,
( )

= ( − − ⋯ − − − − + ⋯ − ) ≤ ≤ =
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def
and r

√
n
i=1 x

i 2 is the standard radial coordinate. Observe that v i is formed by sub-
def

(
tracting

⋯
of the “radial part” 0, ω1, , ωn from the standard spatial unit

( )

basis vector bµ
i

0,0, ,

=

0,

∑

1

( )

® ,0, ,0

i

(
. Note

⋯
that

)
n
i

( )

th spatial slot

=1 ω
i 2 1.

=

∇
For this null frame, in terms

⋯ )

of differential

∑

op

(

erators,

) =

L ∂t ∂r, while L ∂t ∂r. The

e(i) are the angular derivatives, i.e., derivatives in directions tangential to the Euclidean spheres
def

Sr,t

= + ∇ = −

= {(τ, x1,⋯, xn) ∣ τ

∇

= t,
The following proposition

√
n

sho

(xi

that
relative

∑i
w

=1

s
to a null frame.

)2 = r.
the

}
Minkowski metric has a very nice form when expressed

Proposition 2.2.1 (Null frame decomposition of m). If {L,L, e(1),
then we can decompose

⋯, e(n−1)} is a null frame,

1 1
(2.2.2) mµν LµL m

2 ν L µν
2 µLν ,

wher
(
e m

= − − + /

/ µν is positive-definite on the m−
)

orthogonal complement of span L,L , and mµν vanishes on
span L,L .

Similarly, by raising each index on both sides of (2.2.2) with m

( ) /

−1, we have that

(2.2.3) m−1 µν 1 µν
LµLν

1
LµLν m .

/
2 2

def
Proof. We define m

(

/
µν =
(

m
)
µν +
= /

1

(
L 1
µ

) = − −

)
ν2 Lν +

=
2

/
L
(
µL .

)
Since
=

m L,

+ /

( L) = m(L,L) =
/

0, and m L,L 2, it
easily follo

(
ws that

) =
m L,

(
L

)
m
=
L,L

≤
m

≤
L,L 0. Thus, mµν vanishes

/ (
on span L,L .

Since m L,e(i) m L,e(i) 0 for 1
/ (

i n, it
)
easily
= (

follows that
) =

m L,e(i)) =m L

(

, e i

) = −

0.
Finally
=

, it also easily follows that m e , e m e , e δ , where δ

(

1

)

if
(

i
)

j and
δij

(
0 if i ≠

( ) ( ) ( )

)
j, so that {e( n

i)} − −
i j i j

an /
ij ij

1
i=1 is m orthonormal basis for

( )

the m

/ (

co

=

−orthogonal mplemen

)

t of
span L,L .

= =

�

Remark 2.2.1. If the null frame is the one described in Example 2.2.1, then mµν is a metric that is
positive definite in the “angular” directions, and 0 otherwise. In fact, m is the standard Euclidean
metric on the family Euclidean spheres Sr,t. m

/
/

/ is known as the first fundamental form of the spheres
relative to m.
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