
MATH 18.152 COURSE NOTES - CLASS MEETING # 13

18.152 Introduction to PDEs, Fall 2011 Professor: Jared Speck

Class Meeting # 13: Geometric Energy Estimates

1. ◻m, the energy-momentum tensor, and compatible currents

The following shorthand notation is often used for the “linear wave operator associated to m:”

◻ def
(1.0.1) m = (m−1)αβ

− + =

∂α∂β.

Using this notation, the wave equation ∂2
t ∆φ 0 can be expressed as

(1.0.2) mφ = 0.

We now introduce a very important object

◻
called the energy-momentum tensor. As we will see,

it encodes some very important conservation laws associated to solutions of (1.0.2).

Definition 1.0.1. The energy-momentum tensor associated to equation (1.0.2) is

def
Tµν = ∂µφ∂νφ −

1
(1.0.3) mµν

2
(m−1)αβ∂αφ∂βφ.

Later in the course, we will hopefully have time to motivate its derivation in the larger context
of variational methods. For now, we will simply study/use its useful properties.

Note that Tµν is symmetric:

(1.0.4) Tµν = Tνµ.
In your homework, you will prove the following very important positivity property of T, which is

called the dominant energy condition.

Lemma 1.0.1 (Dominant Energy Condition for Tµν).

(1.0.5)

T (X,Y ) def= TαβX
αY β ≥ 0 if X,Y are both timelike and future-directed or timelike and past-directed.

Since causal vectors are the limit of timelike vectors, we have the following consequence of (1.0.5):

(1.0.6)

T (X, ) def
Y = T α β

αβX Y ≥ 0 if X,Y are future-directed and causal or past-directed and causal.

As before, we can raise the indices of T

(1.0.7) T µν

∶

= (m−1)µα(m−1)νβTαβ.
1
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(
A very sp = =

⋯ )
ecial case of Lemma 1.0.1 is the following, which corresponds to Xµ Y µ δµ0

1,0,0, ,0 in the lemma:
=

T = T 00 = 1 3
2 1

(1.0.8) ∂ φ φ 2
00 µ t,x .

2 µ

The

∑
=0
( ) =

2

derivation of (1.0.8) is a simple computation that you

∣∇

should

∣

do for yourself. Note that T00 is
positive definite in all of the derivatives of φ. This fact will play an important role in Theorem 2.1
below.

The next lemma shows that T µν is divergence-free whenever φ verifies the wave equation. This fact
is intimately connected to the derivation of conservation laws, which are fundamental ingredients
in the study of hyperbolic PDEs.

Lemma 1.0.2 (The divergence of T µν). Let Tµν be the energy-momentum tensor defined in
(1.0.3). Then

(1.0.9) ∂ T µν 1
mφ m− να

µ ∂αφ.

In particular, if φ is a solution to (1.0.2)

=

,

(

then

◻ )( )

(1.0.10) ∂µT
µν 0.

Proof. The proof is a computation that uses the symmetry

=

property (m−1)µν = (m−1)νµ and the
fact that we are allowed to interchange the order of partial derivatives (if φ is sufficiently smooth):

(1.0.11) ∂µT
µν = ∂µ((m−1

mφ m

)µα(m−1)νβ 1
∂ φ∂ φ − (m−1)µν m−1 αβ
α β ∂αφ∂βφ

= (◻
2

1 νβ∂βφ m 1 µα m 1 νβ ∂α

(

φ ∂µ

)

∂βφ

)

− 1 1

−

m

)( )

( − )µν(m−1

+

)αβ
( − ) ( −

( ) 1
∂µ∂αφ ∂βφ

) ( )

− (m−1)µν(m−1)αβ(∂αφ)∂µ∂βφ

= (◻
2 2

mφ m−1 νβ∂βφ,

where the last three terms have

)(

canceled

)

each other.
�

As we will soon see, the energy-momentum tensor provides an amazingly convenient way of
bookkeeping in the divergence theorem. However, in order to apply the divergence theorem, we
need to find a useful vectorfield to take the divergence of. By useful, we mean a vectorfield that can
be used to control a solution φ to the wave equation. One way of constructing a useful vectorfield is
to start with an auxiliary vectorfield X and then to contract it with the energy momentum tensor
to form a new vectorfield J. The next definition shows how to do this.

Definition 1.0.2. Given any vectorfield X, we associate to it the following compatible current,
which is itself a vectorfield:

X Jµ
def

(1.0.12) T µαXα.
( ) =
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So which vectors X are the useful ones? It turns out that the answer is causal vectors. This fact is
closely connected to the dominant energy condition (1.0.5). This will become more clear in our proof

def def
of theorem 2.1 below; Note that by Lemma 1.0.1, JµYµ = T µαXαYµ = T α

αβX Y β = T (X,Y ) ≥ 0 if
X,Y are both timelike and future-directed (i.e.,

In order to apply the divergence theorem to
carry out this computation in the next corollary

(
X ,Y 0 0) or past-directed (i.e., X

X)

0 , 0).
Jµ, we

> 0 Y 0

of course need to know its divergence.
<

We
.

Corollary 1.0.3. Using (1.0.4) and (1.0.10), we have that

(1.0.13) ∂ (
(X)
Jµ) = Tαβ(Xµ

)παβ,

where

(X) def
πµν = 1

(1.0.14) (∂µXν + ∂νXµ
2

is called the deformation tensor of X.

)

We now state a version of the divergence theorem that is tailored to our study of the linear wave
equation.

Theorem 1.1 (Divergence Theorem
( )

). Let φ be a solution to the linear wave equation ◻mφ = 0.
Let
⊂
X
+
be any vectorfield, and let X J be the compatible current define in Definition 1.0.2. Let

Ω R1 n be a domain with boundary ∂Ω. Then the following integral identity holds:

∫ N̂α
(X)Jα[φ(

X

(1.0.15) σ)]dσ = ∫ ∂µ
( )
Jµ φ t, x dtdnx.

∂Ω Ω

2. Energy Estimates and

(

Uniqueness

[ ( )])

We will now use the results
◻

of
=

the previous section to derive some extremely important energy
estimates for solutions to mφ 0. The results we derive are a geometry version of integration by
parts + the divergence theorem. They could alternatively be derived by multiplying both sides of
the wave equation by a suitable quantity and then integrating by parts over a suitable hypersurfaces,
but there is a substantial gain in geometric insight that

(

accompanies our use of compatible currents.

Theorem 2.1 (Energy estimates in a cone). Let φ t, x be a C2 solution to the 1 n dimensional
global Cauchy problem for the linear wave equation

) +

(2.0.16) mφ 0,

(2.0.17) φ 0, x f x , x Rn,

(2.0.18)

∈ [ ∞]

∂ φ

◻ =

t

(
0, x

) =
g

(
x

)
, x

∈
Rn.

Let R 0, , let X be the past-directed timelike vector defined by Xµ δµ0 , and let X Jµ φ t, y
b
∑
e the

(
comp

)
atible
= (

curr

(

+
ent (1.0.12) associated

)

to

=

)
X

(

. Note

)

that

∈

by (1.0.8),
= ( )

tφ

(X
n ∂ 2
µ 0 ∂µφ

2 n
i

)J
−

∑
µ φ t, y

[ ( )]
2

t,yφ t, y

= =
2

1 the ener
( = ∣∇ ( )∣ =

(∂iφ . Define square of the gy E φ t by
[ )]

def 1
E2

)

ˆ(2.0.19) φ t Nµ
(X)Jµ φ t, y dny

[ ]( )

2

BR− p 2 BR−

t,yφ t, y dny,
t t p

[ ]( ) = ∫
( )

[ ( )] = ∫
( )

∣∇ ( )∣



4 MATH 18.152 COURSE NOTES - CLASS MEETING # 13

ˆwhere Nµ = δ0
µ

R4, and BR p
= −

( )
(and
⊂

ˆtherefore Nµ δµ0 ) is the past-pointing unit normal covector to t BR t p
R3 denotes the solid Euclidean ball of radius R centered at p. Then

{ }× − ( ) ⊂

(2.0.20) E[φ](t) ≤ E φ 0 .

Pr
[

o
∞

def
of.
) ×

The goal
∣ ∣ −

is to
∣ ≤

apply
−

Theorem
}

1.1 to the solid truncated backwards light cone t,p;R τ, y
0,

C
Rn

= B
y t

C

∪
p

[ ]( )

M
R

∪
τ

T
and to

B
mak

=
e

{
use

} ×
of the

( )
dominan energy condition. It is easy

def
that ∂ t,p;R t,p;R , where 0 BR p is the flat base of the truncated cone,

= {(
to see

)

def

∈

{ ( def
t}×B n

R−t p) is the flat top of the truncated cone, andMt,p;R

=
= {(τ, y

is the mantle of the truncated cone.

T

By Theorem 1.1, we have that

) ∈ [0,∞)×R ∣ ∣y−p∣ = R−τ}

(2.0.21) E[φ](t) −E[
X

φ](0) + F [φ] = ∫
C

∂µ(
( )
Jµ[φ(τ, y)])dτdny,

t,p

where

def ˆ(2.0.22) F φ N α
α φ dσ

t,p;R

(X)J σ

is the “flux” associated to t,p;R.

[

Since

] =

φ

M

solves the wav

[

e

(

equa

)]

tion (2.0.16), and since X πµν 0,
the identity (1.0.13) implies

∫

M
that the right-hand side of (2.0.21) is 0. Therefore,

( ) =

(2.0.23) E[φ](
[ ] ≥

t) −E[φ](0) + F φ 0.

We claim that F φ 0. The energy
observation for showing that F [φ] ≥

inequality (2.0.20) would then follow from (2.0.23). They key

=
0 is the following. Along

[ ] =

the mantle t,p;R, it is easy to see
ˆ(draw the picture!) that Nµ Lµ, where L is a past-directed null vector. Therefore, the integrand

in (2.0.22) is equal to TαβXαLβ, and sinc

≥
e X is a past-directed

[ ] ≥
timelike vector,

M

the dominant energy

condition (1.0.6) implies that TαβXαLβ 0. Therefore, F φ 0 as desired.
�

Theorem 2.1 can easily be used to prove the following local uniqueness result for solutions to the
linear wave equation.

Corollary 2.0.4 (Uniqueness
same initial data on BR(p

def
light cone” p;R τ, y

def

)
0

⊂ {(
).

)
Supp
∣

ose
= }

that two C2 solutions φ1 and φ2 to (2.0.16) have the

C = {(
τ, y τ 0 . Then

τ R,0 y p R

Proof. Define ψ φ1 φ2

)

.

∣

Then

≤

ψ

≤

verifies

≤ ∣

(2.0.16)

− ∣ ≤

and

−
the two solutions agree on the “solid ds

τ}
backwar

.

= − furthermore, E[ψ](
[ ]( ) = ≤ ≤ [ ]( )

0 0. Thus, by Theorem
2.1, E

(
ψ

)
t
∈ C

0 for 0 t R. Therefore, from the definition of E ψ t , it follows that τ,yψ τ, y
0 for τ,

(
y

)
p

=
;R. Thus, by elemen

(
tary

) ∈
analysis,
C

ψ is constant in p;R. But ψ

)

0,

=

x 0 for
∇

0, x p

us, ψ points τ, y

( )
;R

Th τ, y 0 for all p;R. �

=
.

Corollary 2.0.4 is one illustration of the finite speed of prop

C

agation prop

(

ert

)

y

=

associated

( )

to

∈ C

the
linear wave equation. Another way to think about it is the following. Suppose you alter the initial
conditions outside of BR p , but not on BR p itself. Then this alteration has no effect whatsoever
on the behavior of the solution in the spacetime region p;R Think about this claim yourself; it

( ) ( )
C

follows easily from the Corollary!
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3. Developments, Domain of Dependence, and Range of Influence

We will now develop a language for discussing the finite speed of propagation properties of the
linear wave equation in more detail. If we had more time in this course, we could adopt a more
geometric point of view that would apply to many other hyperbolic PDEs. This would involve
fleshing out our discussion of Lorentzian geometry, and also developing a generalized version of
geometry that applies to a large class of PDEs.

Warning 3.0.1. Some people permute or even severely alter the following definitions, which can
be very confusing. The definitions below therefore indicate some of my biases.

Definition 3.0.3
( )

(
=
Dev

(
elopmen
) (

t)
)
. Let S t, x t 0 be a set. Assume that that we know the

initial data φ 0, x f x , ∂tφ 0, x
⊂ {( ) ∣ =

= g(x) for the wave equation (1.0.2), but only for x S. Then a
future development Ω of

(
S is

)
defined to be a “future” region

}

of spacetime Ω R1+n ∩ {(t,
∈

⊂ x t 0
on which the

D
solution
−( )

φ t, x to (1.0.2) is uniquely determined by the initial data on S
)
.
∣
A

≥
past

development S can be analogously defined (replace t 0 with t 0 in the previous definition).

}

Example 3.0.1. If BR(p) and Cp;R are as in Corollary 2.0.4, then p;R is a development of BR p .
You can im

(
agine
)

that the solution knows how to “develop”

≥

in p;R from

≤

.

C
the initial conditions on

(
its

subset BR p

)

Definition
D

3.0.4 (Maximal development). The maximal

C

+( )
future development of S, which we

denote by
D
S
(
,
)
is defined to be the union of all future developments of S. The maximal past

development
( ) ∪D−

Example

D+ S

3.0.2.

( )
− S can be analogously defined. The maximal development of S is defined to be

S .

def
Consider the plane P = {(t,

D
x1 x2, x3) ∣ x1 = 0}
(
,
) =

. Then using techniques from
a more advanced course, one could show that P P for the wave equation (1.0.2). That is,
knowing the conditions of a solution φ along P is not enough information to determine the solution
anywhere else. This is closely connected to the fact that all smooth curves in P have tangent vectors
that are timelike relative to the Minkowski metric.

Definition 3.0.5 (Domain of dependence). Let Ω ⊂ R1+n. Assume that φ is a solution to the
wave equation (1.0.2) in Ω. A domain

∣
of dep

∇
endenc

∣
e for Ω is a set S such that φ is completely

determined on Ω from only the data φ S and t,xφ S.

Remark 3.0.1. For general nonlinear hyperbolic PDEs, domains of dependence depend both on
Ω and the solution φ itself. However, for the linear wave equation, domains of dependence do
not depend on the solution. Roughly speaking, this is because the “geometry of the solution” is
predetermined by the Minkowski metric m.

Example 3.0.3. In 1 1 dimensions, a domain of dependence for the spacetime point t, x (for the
wave equation (1.0.2)) is the “initial data” interval 0 x t, x t . Another domain of dependence
for this point is the in

+

terval {t
{ }×[ − + ]

/2} × [x − t/2, x + t/2]. A trivial example is that t, x is

(

a domain

)

of
dependence for itself.

Example 3.0.4.
≥ }

In 1+
= =

3 dimensions, a domain of dependence for the positive t axis

( )

t, x1, x2, x3 x1

x2 x3 0, t 0 (for the wave equation (1.0.2)) is all of “space:” {(t, x1, x2, x3

{(
) ∣ t = 0}. Any subset

of space is not a domain of dependence for the positive t axis.

) ∣ =

The next definition is complementary to the notion of domain of dependence.
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Definition
+

3.0.6 (Range of influence). Assume that φ is a solution to the wave equation (1.0.2)
in
(
R1

)
n. The range of influence R for a set S ⊂ ( ) ∈

∣ ∇
R1+n is the set of all points t, x R1+n such that

φ t, x is affected by the initial data φ S and t,xφ S.

Example
= { } × [−

3.0.5. In 1 1 dimen
S 0 1,1

+
] is R = {(t, x) ∣ −

sions, the (fut
+

ure) range of influence (for t 0) of the interval

+

t − 1 ≤ x ≤ t 1 .

∣

Example
{(

3.0.6. In 1 1 dimensions, the (future) range of influence (for t

≥

= ) ∣ ≥ } R = {(
0) of the t axis

S t,0 t 0 is

+

t, x t 0 .

}

Example

R = {(
3.0.7.

) ∣ ≤
In

≤
1

∣
3

∣
dimensions,

=
the (future) range of influence (for t 0) of

≥

S 0 ∂B1 0
def

is t, x 0 t 1, x 1

) ∣

t

≥ }

t, x 0 t t, x 1 t where x

≥√
x1 2

= {
x2

}
2 x3 2

This is a consequence of the Sharp Huygens’ Principle.

× ( )
− } ∪ {( ) ∣ ≤ < ∣ ∣ = + } ∣ ∣ = ( ) + ( ) + ( ) .
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