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18.152 Introduction to PDEs, Fall 2011 Professor: Jared Speck

Class Meeting # 15: Classification of second order equations

1. Review of Three Important Examples of PDEs

Let’s review some basic facts concerning the three PDEs we’ve examined in detail thus far.

Equation Type Well-posed problems Features
∆u(x) = f(x) Elliptic Boundary value prob- mean value properties;

lems: All of Rn (with maximum principle; Har-
boundary conditions nack inequality
at ∞); finite bound-
aries under Dirichlet,
Neumann, Robin,
or Mixed boundary
conditions

∂tu(t, x)−∆u(t, x) = f(t, x) Diffusive (parabolic): Initial value (Cauchy) Infinite speeds of propaga-
problems: all of Rn tion; smoothing properties;
at t = 0; Initial + maximum principle, t−n/2

boundary value prob- decay as t → ∞ for the
lems: data at t = 0 + global Cauchy problem
Dirichlet, Neumann,
Robin, or Mixed
boundary conditions

−∂2t u(t, x) + ∆u(t, x) = f(t, x) Hyperbolic Initial value (Cauchy) Finite speed of propagation;
problems: all of Rn domain of dependence and
at t = 0; Initial + influence; energy identities;
boundary value prob- order t(1−n)/2 decay as t →
lems: data at t = 0 + ∞ for the global Cauchy
Dirichlet, Neumann, problem
Robin, or Mixed
boundary conditions

2. Motivating example

Let’s consider the following second-order linear PDE on R1+n :

L def
(2.0.1) u = Aαβ∂ ∂ u+Bα

α β ∂αu+ Cu = 0.

In (2.0.1), A,B,C are allowed to be functions of the coordinates (x0, · · · , xn). We will also use the
standard notation x0 = t. By the symmetry of the mixed partial derivatives, we can also assume
that A is symmetric:
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(2.0.2) Aµν = Aνµ.

The question we would like to address at the moment is the following: what are the basic properties
of solutions to (2.0.1)? Is this equation most like a Laplace, heat, or wave equation? That is, is
(2.0.1) elliptic, diffusive, or hyperbolic? As we will see, the most important part of equation (2.0.1)
in this context is the principal part Aαβ∂α∂βu, which involves the top-order derivatives.

To begin answering this question, let’s start with a simple example on R2. Let’s try to classify
the following equation:

L def
(2.0.3) u = ∂2t u− 4∂t∂

2
xu+ 2∂xu = 0.

Note that it would be easy to answer our question if we were able to make a linear change of
variables that eliminates the cross term −4∂t∂xu; the PDE would then look just like one of the
other ones we have already studied. More precisely, let’s try to eliminate the cross terms by making
good choices for the constants a, b, c, d in the following linear change variables:

(2.0.4a) t̃ = at+ bx,

(2.0.4b) x̃ = ct+ dx.

In order to have a viable change of variables, we also need to achieve the following non-degeneracy
condition from linear algebra:

(2.0.5) ad− bc = 0.

(2.0.5) states the determinant of the above linear transformation is non-zero, and that the trans-
formation is non-degenerate.

Then using the chain rule, we have that

∂t ∂x
(2.0.6a) ∂t = ∂ x

∂t t̃ + ∂ = a∂ + c∂x,
∂t t

∂t ∂x

˜ ˜ ˜
(2.0.6b) ∂ =

˜
x ∂

∂x t +

˜
∂x = b∂

∂x t + d∂x.

Inserting (2.0.6a) - (2.0.6b) into (2.0.3), w

˜
e

˜
compute

˜ ˜
that

˜ ˜

(2.0.7) Lu = (a2 − 4ab+ 2b2)∂2˜u+ (2ac+ 4bd− 4ad− 4bc)∂t∂
2 2 2

xu+ (c
t

− 4cd+ 2d )∂x

To make the cross term in (2.0.7) vanish, we now choose

˜ ˜ ˜u.

(2.0.8) a = 1, b = 0, c = 2, d = 1.

Note that (2.0.8) also verifies the non-degeneracy condition (2.0.5). We remark that other choices
would also have worked. In the new coordinates, we have that

(2.0.9) Lu = ∂2u− 2∂2xu.t

6
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Dividing by −2, we see that the PDE (2.0.3) was actually a “standard” linear wave equation in
disguise:

1
(2.0.10) − ∂2u+ ∂2

2 t x = 0.

Relative to the coordinates (t, x) , the “speed”

˜
associated

˜
to the wave equation (2.0.10) is

√
2.

Let’s do another example. C̃onsider
˜

the PDE

L def
(2.0.11) u = −2∂2t u− 2∂t∂xu− ∂2xu+ ∂xu = 0.

Using (2.0.6a) - (2.0.6b) again, we compute that

(2.0.12) Lu = (−2a2 − 2ab− b2)∂2˜u+ (−2ac− bd− 2ad− 2bc)∂t∂xu+ (
t

−2c2 − 4cd− d2)∂2xu
+ b∂t̃u+ d∂xu.

˜ ˜ ˜
Choosing

˜

1
(2.0.13) a = √ , b = 0, c =

2
−1, d = 1,

we see that

(2.0.14) Lu = −∂2˜ut − ∂2xu+ ∂xu.

Thus, multiplying by −1, we see that (2.0.11) is really

˜
just

˜
a Laplace-like equation in disguise:

(2.0.15) ∂2u+ ∂2
t xu− ∂xu = 0.

Equation (2.0.11) is therefore elliptic.

˜
We remark

˜
that

˜
the first-order term in (2.0.15) does not

affect the elliptic nature of the system.
Let’s do one final example. Consider the PDE

(2.0.16) L def
u = ∂2t u− 2∂t∂xu+ ∂2xu+ ∂xu = 0.

Using (2.0.6a) - (2.0.6b) again, we compute that

(2.0.17) Lu = (a2 − 2ab+ b2)∂2˜u+ (2ac+ 2bd− 2ad− 2bc)∂t̃∂xt ˜u+ (c2 − 2cd+ d2)∂2x
+

˜u
b∂t̃u+ d∂x̃u.

Choosing

(2.0.18) a = 1, b = 0, c = −1, d = −1,

we see that

(2.0.19) Lu = ∂2˜ut − ∂x̃u.
Thus, (2.0.16) is equivalent to
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(2.0.20) −∂x̃u+ ∂2˜u = 0.
t

Now observe that (2.0.20) is just the standard heat equation, with the variable x
ying

˜ playing the role
of “time” and t̃ pla the role of “space.” Equation (2.0.20) is therefore diffusive (parabolic).

3. A general framework

In this section, we will establish a general framework for classifying second order constant co-
efficient scalar PDEs. The framework will cover the three examples from the previous section as
special cases. The proof will reveal that the classification is intimately connected to the theory of
quadratic forms from linear algebra. Throughout this section, we will use the notation

(3.0.21) x = (x0, x1, · · · , xn).

As above, we will investigate PDEs of the form

L def
(3.0.22) u = Aαβ∂ ∂ u+Bα

α β ∂αu+ Cu = 0,

where Aµν = Aνµ.
We begin by providing a simple version of Hadamard’s classic definitions.

Definition 3.0.1 (Hadamard’s classification of second order scalar PDEs). Equation (3.0.22)
is respectively said to be elliptic, hyperbolic, or parabolic according to the following conditions on
the (1 + n)× (1 + n) symmetric matrix A :

• All of the eigenvalues of A have the same sign - elliptic
• n of the eigenvalues of A have the same (non-zero) sign, and the remaining one has the

opposite (non-zero) sign - hyperbolic
• n of the eigenvalues of A have the same (non-zero) sign, and the remaining one is 0 -

parabolic

Remark 3.0.1. Many of the ideas in this section, including the definition above, can be generalized
to include the case where A depends on (x), or even on the solution u itself; PDEs of the latter
type are said to be quasilinear.

We now state and prove the main classification theorem.

Theorem 3.1 (Classification of second order constant-coefficient PDEs). Consider the
following second order constant coefficient PDE

L def
(3.0.23) u(x) = Aαβ∂α∂βu(x) +Bα∂αu(x) + Cu(x) = 0,

def
where ∂α = ∂

α . Then there exists a linear change of variables yµ = M µ
∂x α xα such that

• If all of the eigenvalues of Aµν have the same (non-zero) sign, then (3.0.23) can be written

as ±L def 2

u = ∆yu(y) + B̃α ∂
αu(y) + Cu(y) = 0, where ∆ = n ∂

y∂y µ=0 (∂yα)2
.

• If n of the eigenvalues of A have the same (non-zero) sign, and the remaining one has the

opposite (non-zero) sign, then (3.0.23) can be written as

∑
±Lu = �yu(y) + Bα ∂

αu(y) +
∂y

def
Cu(y) = 0, where � = (m−1)αβ ∂ ∂

y α β is the standard linear wave operator, and

˜
(m) 1

∂y ∂y
− =

diag(−1, 1, 1, · · · , 1) is the standard Minkowskian matrix.
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• If n eigenvalues λ(1), · · · , λ(n) of A have the same (non-zero) sign, and the remaining one is

λ(0)
2∑ = 0, then (3.0.23) can be written as ±Lu = B̃0 ∂

0u(y0, y1, · · · , yn)+
∑n ∂

i=1 i 2u(y0, y1, · · · , yn)+
∂y (∂y )

n
i=1 B̃

i ∂ u(y0, y1, , yn)+Cy = 0. Furthermore, let v(0), v(1), , v(n) be a corresponding
∂yi

· · · · · ·
(

diagonalizing unit-length co-vector basis. More precisely, this means that n µ)
v 2
αα=0 = 1

ν)
for 0 ≤ µ ≤ n, that Aαβ

(µ) (
v v = λ(µ)

| |
α β if µ = ν, and that Aαβ

(µ) (ν)
vα vβ = 0 if µ = ν (standard

linear algebraic theory guarantees the existence of such a basis). Then if the

∑
non-zero vector

B satisfies Bα (0)
vα = 0, we also have that B0 = 0.

Remark 3.0.2. The “±” sign above distinguishes whether or not most of the eigenvalue of Aµν

are positive or negative. For example, if all of

˜
the eigenvalues of Aµν are positive, then Lu =

∆yu(y) + · · · , while if they are all negative, then Lu = −∆yu(y) + · · · (and similarly for the other
two cases).

Proof. Let’s consider the first case, in which all of the eigenvalues have the same (non-zero) sign.
Then by standard linear algebra, since Aµν is symmetric and positive definite (perhaps after mul-
tiplying it by −1), there exists an invertible “change-of-basis” matrix M ν

µ such that

(3.0.24) M µ
α A

αβM ν
β = Iµν ,

def
where Iµν = diag(1, 1, · · · , 1) is the (n+ 1)× (n+ 1) identity matrix. In fact, we can choose

1
(3.0.25) M µ

α = √ v(µ) (no summation in µ),
|λ(µ)| α

where λ(µ) (µ) (µ)
is the “eigenvalue” of A corresponding to the unit-length covector vα (i.e., n

αα=0 |v |2 =
1) appearing in the statement of the theorem.

µ

We now make the linear change of variables yµ = M µ
α x

α. Then by the chain rule, ∂

∑
∂xα

= ∂y ∂
∂xα ∂yµ

=

M µ ∂
α ∂yµ

. Therefore,

Aαβ
∂ ∂

(3.0.26) u = AαβM µ ν ∂ ∂ µν ∂ ∂

∂xα ∂xβ α Mβ u = I u = ∆yu.
∂yµ ∂yν ∂yµ ∂yν

This completes the proof in the first case.
In the second case, in which n of the eigenvalues of A have the same (non-zero) sign, and the

remaining one has the opposite (non-zero) sign, the proof is similar. The key difference is that
because of the eigenvalue of opposite sign, (3.0.24) is replaced with

(3.0.27) M µAαβM ν = (m−1 µν
α β ) ,

def
where (m−1)µν = diag(−1, 1, 1, · · · , 1) is the standard (1+n)×(1+n) Minkowski matrix. Therefore,

αβ ∂ ∂ αβ µ ν ∂ ∂ ∂ ∂
(3.0.28) A u = A M 1

xα β α M∂ ∂x β u = (m− )µν u = yu.
∂yµ ∂yν

�
∂yµ ∂yν

This completes the proof in the second case.

6
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In the third case, in which n of the eigenvalues of A have the same (non-zero) sign, and the
remaining one is 0, the proof is similar. The key difference is that because of the zero eigenvalue,
(3.0.24) is replaced with

(3.0.29) M µ
α A

αβM ν µν
β = D ,

def
where Dµν = diag(0, 1, 1, · · · , 1).

Therefore,

n

Aαβ
∂ ∂ ∂ ∂ ∂2

(3.0.30) u = AαβM µ
α M

ν ∂ ∂
β u = Dµν u =

xα ∂xβ ∂yµ ∂yν ∂y ∂yν

∑
u.

∂ µ (∂yi)2
i=1

Furthermore, we have that

Bα ∂
u = M µBα ∂

(3.0.31) u.
∂xα α ∂yµ

Thus, using using (3.0.25), we have that

(3.0.32) B̃0 def
= M 0

α B
α = v(0)α Bα = 0.

�

Example 3.0.1. In the first example from above,

Aµν
1

=
−2

(3.0.33) .−2 2

To calculate the eigenvalues of A, we first set

[ ]

1 λ 2
(3.0.34) det(A− λI) = det

[
− −

= λ2 − 3λ− 2 = 0.−2 2− λ
The solutions are

]

3
√

17
(3.0.35) λ =

±
.

2
Since the eigenvalues are of opposite sign, the corresponding PDE is hyperbolic.

Example 3.0.2. In the second example from above,

Aµν =
−2 −1

(3.0.36) .−1 −1

To calculate the eigenvalues of A, we first set

[ ]

det(A− λI) = det

[
−2− λ −1

(3.0.37) = λ2 + 3λ+ 1 = 0.−1 −1− λ
The solutions are

]

6
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λ =
−3

√
± 5

(3.0.38) .
2

Both of these eigenvalues are negative, and thus the corresponding PDE is elliptic.

Example 3.0.3. In the final example from above,

1 1
(3.0.39) Aµν =

[
−

−1 1

]
.

To calculate the eigenvalues of A, we first set

1 λ 1
(3.0.40) det(A− λI) = det

[
− −

= λ2 + 2λ = 0.−1 1− λ
The solutions are

]

(3.0.41) λ = 0,−2,

and so the corresponding PDE is parabolic.
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