
Real analysis, Problem set 5 

In this problem set, we do some problems connected with Calderon-Zygmund theory and elliptic 
PDE. 

1. (An application of the Calderon-Zygmund inequality in variable coefficient elliptic PDE) Here 
is an interesting theorem about variable-coefficient elliptic PDE that are close to the Laplacian. 

Theorem 1. For any dimension n and  0 < α < 1, there is a positive constant E(n, α) > 0 so that 
the following holds. Suppose that Lu = i,j aij ∂ ∂ i j u, where the coefficients aij obey |aij (x) − δij | < 
E(n, α) for all x. Suppose that u ∈ C2(B1) and Lu = 0. Then 

IuIC1,α (B 0
1/2) ; IuIC (B1). 

This problem also gives a chance to review some of the ideas from the elliptic PDE unit. For 
full credit, prove the weaker estimate IuIC1,α (B1/2) ; IuIC1(B1). For extra credit, prove the full 
theorem. 

Note that the estimate does not depend on any regularity of aij – just the point wise estimate 
|aij − δij | < E(n, α). Remarkably, if we replace the condition |aij − δij | < E(n, α) with the weaker 
condition 0 < λ ≤ aij ≤ Λ, then I read that this estimate is false, and the best true estimate has 
the form IuI  Cβ(B1/2) ; IuIC0(B1) for a small constant β = β(n, λ, Λ) > 0. 

2. (Higher-order elliptic PDE) A lot of what we proved for the Laplacian extends to higher-order 
operators.  Here we focus on extending the Calderon-Zygmund theorem. We consider the operator 

n
Lu := ∂4

i=1 i u, but it will  be clear after you do the problem that the same argument applies to 
many other operators. 

Suppose that u is a Schwartz function. Suppose that I denotes a multi-index with |I| = 4. It 
follows easily that (up to some factors of 2π): 

ωI

(∂I u)
∧(ω) =  n (Lu)∧(ω).

ω4 
i=1 i 

We want to use this information to describe how ∂I u relates to Lu in the space domain. Let ΨE(ω) 
          | | −1 be a smooth (radial) function which is 1 on E < ω < E and is supported on E/2 < |ω| < 2E−1, 

with natural bounds on its derivatives etc. Now define TI,Ef by 

ωI

(TI,Ef)
∧ = ΨE(ω) n f∧(ω). 

i=1 ω
4

 i 

We have TI,E(Lu) → ∂I u as E → 0.   

 
   ωI  Note that the function ΨE(ω) n is C∞ and compactly

ω4  
supported. Therefore, 

 
i=1 i 

TI,Ef = f ∗ KI,E, 
where 

∨ 
ωI

KI,E = ΨE(ω) n . 
i=1 ω

4 
 i

Here is the part of the problem you actually

 
 ha

  
ve to do. Check that the following bounds hold 

uniformly in E > 0: 
1 



2 

(1) |KI,E(x)| ; |x|−n . 

(2) |  ∂KI,E(x)| ; |x|−n−1. 

(3) ITI,EfI2 ; IfI2. 
Using these three properties, the Calderon-Zygmund inequality implies that for all 1 < p < ∞, 

uniformly in E, 

ITI,EfIp ≤ C(p, n)IfIp.  
Therefore, for all Schwartz u,  

I∂I uIp ; ILuIp. 

Optional. By a similar argument, the Korn inequality (and the Schauder inequality) extend to 
higher order elliptic PDE. Here we discuss the Korn inequality. To prove Korn’s inequality, we nneed  estimates (1) and (2) above, and we also need the cancellation: for any sphere of radius r,

K = 0. For the kernels KI,E above, this equation does not always hold.
Sr 

  First figure out for 
which choices of I the equation holds. Next, here is a way to get around this. Prove that for each 
I, we can choose a constant cI so that, if we define �  ∨  ωI 

K̃I,E := ΨE n c ,4  
=1

− I
i ω i

 
n 

˜then KI,E = 0 for every radius r > 0.

 �
Sr 

  
Using this observation, check that if u ∈  C∞ (Rn

comp ), and 0 < α < 1, then the proof of Korn’s 
inequality can be adapted to show that 

[∂4 u]α ; [Lu]α. 
This problem is optional anyway, so write as little or as much as you like about this adaptation. 

 g(Recall |g(x)− (y)that [g]α := supx,y 
|

x y α .) | − |

Final comment. You will not be surprised to learn that the part of the elliptic theory which is 
hardest to adapt to this higher-order setting is the boundary regularity theory, which one needs in 
order to set up the Dirichlet problem. In fact, it’s rather subtle to even state the right version of 
boundary regularity and the Dirichlet problem. I don’t know this area myself, but I believe it was 
worked out by Agmon, Douglis, and Nirenberg in two papers titled “Estimates near the boundary 
for solutions of elliptic partial differential equations satisfying general boundary conditions, parts I 
and II.” 

(∑
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