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In Lecture 2 we mentioned that
H(‘92u||c0 Z | Aul| o and H32UH01 Z | Au|| (1)
for u € C3(R™). However, Korn showed that
[0*u]a < [Au]a

for any a € (0,1). We will spend the next few lectures proving results involving the a-Holder norms,
culminating in a proof of the Schauder inequality. In the process we will also see why the bounds in (1) fail.
The a-Holder norms provide an intermediate measure of smoothness between C° and C*, and offer valuable
control on solutions to Au = f and Au = 0 with boundary conditions.

To approach Korn’s inequality, we will use an expression for 9%« in terms of Au. This formula is derived

from physical potential theory. The “gravitational” field in R"™ is given by

x
F.(z)=c,—=
||

for some constant ¢, > 0 and z # 0. As we shall see, it is most convenient to choose ¢, = W to
simplify divergence formulz for F,. In fact F), is generated by the potential

|zl ifn >3

ch log |z| ifn=2

|—1’L+l

for appropriate constants ¢,, > 0. That is, F,, = VI',. Is is easy to calculate that |VI',| ~ |z and

|V2Fn| ~ |z|™" for large |z|. Furthermore, div F,, =0 at = # 0, so AT';, =0 for z # 0. We note in passing
that div F}, = 0 may be derived without computation from the symmetry of F), and the fact that

/ F, a=1 (2)
Sm=1(r)

is independent of 7.



For the remainder of the lecture, let 2 C R™ be an open bounded region with smooth boundary 0.

From div F,, = 0 for « # 0 and (2), we may easily verify that

1 if0oe
/Fn-ﬁ: 3)
o 0 if0gQ.

This reflects the physical (and distribution theoretic) interpretation that div F,, = AT',, = §p. We now verify
that convolution against I[';, yields a solution to Poisson’s equation.
Proposition 1. If f € C*(R") and u =T, * f, then u € C*(R") and Au = f.
Proof. By definition,
ua) = [ Flule =9 du = | D)o =) dv.

These integral expressions are well-defined because f € CY(R™) and T',, € LL _(R™). Also, standard domi-

loc

nated convergence arguments show that we may bring first derivatives under the integral sign:
Oju = / fy)o;Tn(z—y) dy = / L(y)0; f(z —y) dy.
w Q

Again these expressions are well-defined because f € C} and 9,I',, € L{ (R"). Differentiating further, we

have

Didyu = /Q P ()00, f(x — ) dy.

Note that we may not form a parallel expression with 9;9,I',,, because 9;0;T,, € L{. (R™). By continuity, it

loc
[

for all regions €2 satisfying the previously stated conditions. By the divergence theorem,

is sufficient to verify that

Bu= [ Vui- /Q ( [ T -y dy) 7 dA().

Q

We use Fubini to interchange the order of integration:

/QAU = /n fy) (/Q VI, (z—y) -1 dA(:c)> dy.

/QAU= [ Twxaly) dy = / I

Now (3) implies that

O

Having proven a solution to the equation Au = f, the question of uniqueness naturally arises. Could
other expressions for u also solve Laplace’s equation? We establish uniqueness in the case that u is compactly

supported:

Proposition 2. If u € CX(R") and f :== Au, then u =T, * f.



Proof. Let w =T, * f, so A(u — w) = 0. The maximum principle for harmonic functions shows that

maxpg, |u —w| = maxgp, |u — w|. Hence to verify that u = w it is sufficient to show that

lim max|u —w| = 0.
R—o0 aBR

Since u is compactly supported, this is equivalent to showing that
lim max |w| = 0.

R—o0 OBR

This is simple when n > 3. After all, if suppu C Bg, and |z| = R > 2Ry, we have

w(z)] =

PO =) 5| < ey 500 [Fa()] =0
R~ |z|>R/2
as R — oo. This estimate fails when n = 2, because I'y does not decay as |z| — oo. We therefore deploy
a more careful analysis, relying on the fact that f is the Laplacian of a compactly supported function. In

particular,
7 (y) dy = Au(y) dy = Vu(y) - 7 dA(y) = 0.

Br, SRy

Hence when |z| = R > 2Ry,

fy)la(z) dy + JW)[Ce(x —y) — Ta(x)] dy
Br, Br,

w(z)| =

: f@)T2(x —y) —Ta(x)] dy

< / F@)|ly| max |VTy| dy
= [z,x—y]

0

< Ro[[fllpigey sup [VIa(2)] =0
21> R/2

as R — oo.
O

Korn’s inequality bounds the regularity of 9?u in terms of Au for compactly supported functions. We
therefore wish to adapt the expressions in Proposition 1 to derive formulee for the second partials of wu.
However, as noted in the proof of Proposition 1, this goal is complicated by the fact that 8;,0;T',, & L _(R™).

Hence we may not directly write 9;0,u = (Au) * 0;0;I';,. We might hope that the integral defining the

convolution converges conditionally, i.e. that

9;0;u = lim f(y)0:0;Tn(x —y) dy (4)

e=0F Jiz—y|>e
for u € C2(R"). However, this equation is patently false if we recall that AT, (2) = 0 for z # 0. If we use (4)
with ¢ = 7 and sum over 1 < i < n, we find Au = 0, regardless of the choice of u. Hence we need to account

somehow for the effect of the singularity of T, on derivatives of the convolution (Au) % T',,. As it turns out,



(4) is almost correct:

Proposition 3. If f € C*(R") and u := f x,,, then

0,0 u(z) = lim F@)00; Tl — y) dy + %@j (). (5)

e—0t lz—y|>e

Proof. As noted in the proof of Proposition 1, we may certainly write

0;0;u(x) = 0; - FW)o;Tn(x —y) dy = 0; - fle —y)0;Th(y) dy = - 0if(x —v)0;Tn(y) dy.

The game of switching the convolution arguments between y and = — y is necessary because the derivatives

0; and 0; act on z, not y. Because 9;I', is locally integrable, we have

8;9;u(x) = lim 0 f(x — y)0;Tn(y) dy
e—0+ ly|>e
= lim 9, flz —y)0;Tn(y) dy
e—0+ ly|>e
= lim 9; f(@)0;Tn(z —y) dy.
e—0F |z—y|>e

We wish to once again move the derivative 0; inside the integral, but the region of integration now depends

on x. Accounting for this:

i f@)o;Tn(z —y) dy = / f(©)0:0;T(z —y) dy + / (i - 0) f(y)0;Tn(x —y) dy.
|[z—y|>e |[z—y|>e |z—y|=¢
Hence
0;0;u(x) = lim f(y)0:0;Tn(x — y) dy + lim (@i - 1) f(y)0;Tn(z —y) dy.
0% S y|>e e=0F Jig—y|=e

To complete the proof, we need to compute the second integral on the right hand side. As e — 0T, we note
that &; -1 = O(1), f(y) = f(z) + O(e), and 9;T',(x — y) = O(~"1). The region of integration is a sphere
of volume O(e"~1). We therefore see that we may replace f(y) by f(z) in the integral to achieve the same
limit. That is:

lim (@i -n)f(y)0;Tn(z —y) dy = f(z) lim (Z; -n)0;Tn(x —y) dy
=0+ |z—y|=¢ e—0F |z—y|=¢
2%
= f(x) lim en—_ dA(z
f( )5—>0+ er1(€) ‘z|n+1 ( )
1
= 0ij f(x).
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