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Let us first recall what we did last time. Last time, we considered u ∈ C2,α(B1) and defined

Nu = (∆u− u3, u|∂B1),

where N : C2,α(B α
1) → C (B1) ⊕ C2,α(∂B1). We’ll call these spaces X and Y , so N : X → Y .

We’ll also denote B1 as B.

Then, N is a C1 map,
dNu(v) = (∆v − 3u2v, v|∂B)

is an isomorphism X → Y for all u ∈ X. And as a corollary of the inverse function theorem, if
F : X → Y is C1 and dFx is an isomorphism, then the image of F contains a neighborhood of
F (x).

Proposition 1. If u ∈ C2(B), and Nu = (f, ϕ), then

(i) ‖u‖C0 ≤ ‖ϕ‖C0 + ‖f‖C0

(ii) ‖u‖C2,α(B) ≤ g(‖f‖Cα + ‖ϕ‖C2,α)

An idea to prove (ii) is to first use global Schauder to get that

‖u‖ 2,α . ‖∆u αC (B) ‖C (B) + ‖ϕ‖C2,α(∂B)

≤ ‖u3‖Cα + ‖f‖Cα + ‖ϕ‖C2,α .

Then, we might try to use that

‖u3‖Cα ≤ ‖u‖3Cα ≤ (ε‖u‖C2,α + Cε‖u‖C0)3

and rearrange. But we have an exponent of 3, so this doesn’t quite work. Instead, we take the
inequality ‖fg‖Cα ≤ ‖f‖C0‖g‖Cα + ‖f‖Cα‖g‖C0 and we have

‖u3‖Cα . ‖u‖2 ‖u‖ 2
CαC0 ≤ ‖u‖C0(ε‖u‖C2,α + Cε‖u‖C0)

and now we can use rearrangement and the maximum principle to get the bounds that we want.

Theorem 2. N is surjective from X → Y .
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Proof. Given (f, ϕ) ∈ Y , define

SOL := {t ∈ [0, 1] : (tf, tϕ) ∈ N(C2,α(B))}.

We want to show that 1 ∈ SOL. We already know that 0 ∈ SOL, so it will suffice to show that
SOL is open and closed. SOL is open since if Nu = (t0f, t0ϕ), that dNu is an isomorphism gives
us that N(C2,α(B)) contains a neighborhood of (t0f, t0ϕ).

To show that SOL is closed, suppose that tj ∈ SOL and tj → t , and Nu∞ j = (tjf, tjϕ). By the
proposition, ‖uj‖ 2

C2,α ≤ C uniformly in B. By the Arzela-Ascoli theorem, uj → u in C for a∞
subsequence. And Nu = limNu∞ j = (f, ϕ). But

‖u ‖C2,α ≤ lim sup∞ ‖uj‖C2,α ≤ C,

so the limit is in C2,α. (We notice here that this does not say that uj → u in C2,α, but says that
2

∞
uj → u in C and the limit is in C2,α, which is good enough for our purposes.∞

Question: if ∆u = 0 on B, u = ϕ on ∂B, then is ‖u‖C1(B) . ‖ϕ‖C1(∂B)?

Here’s a proof idea that doesn’t quite work. We know that ∆∂iu = ∂i∆u = 0, so ∂iu obeys the
maximal principle. We want to say now that

‖∂iu‖C0 ≤ ‖∂iϕ‖C0 ≤ ‖ϕ‖C1(∂B),

but the first inequality does not hold since ϕ does not have derivatives in as many directions as
u does (it is missing the directions normal to ∂B). This idea of bounding the derivatives in the
normal direction will be important later on.

Next examples:

(i) ∆u− |∇u|2 = 0 : this has good global regularity and we can solve the Dirichlet problem.

(ii) ∆u− |∇u|4 = 0 : this has no global regularity and we can’t solve the Dirichlet problem.

Let us look at why the second case is bad. Take n = 1. Then, we are looking for solutions to

u′′ − (u′)4 = 0.

If we take w = u′, then we want to solve w′ = w4. So w−4w′ = 1. But (w−3)′ = −3w−4w′ = −3.
From this, we get that w(x)−3 = w(0)−3 − 3x and we have tat

w(x) = (w(0)−3 − 3x)−1/3.

Now suppose that we want to solve u(0) = 0 and u(1/3) = b. For 0 ≤ b < H, this is solvable but
for b > H, this is not solvable. We notice that if b→ H, then then the norm of the boundary data
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(the maximum of the values of the two points) is uniformly bounded, but |u′(1/3)| → ∞, and this
is what causes our problem.

Key Estimate: If u ∈ C2(Ω), ∆u− |∇u|2 = 0, u = ϕ on ∂Ω, then

‖∂noru‖C0(∂Ω) ≤ C(Ω)‖ϕ‖C2(∂Ω).

(Note: this also gives us that ‖∂u‖C0(∂Ω) ≤ C(Ω)‖ϕ‖C2(∂Ω).)

Proof Sketch: We want to construct B : N → R such that

(i) B(x0) = u(x0)

(ii) B ≥ u on ∂N

(iii) ∆B − |∇B|2 < 0

(ii) and (iii) together will imply that B ≥ u on N . Then, ∂noru(x0) ≤ ∂norB(x0).

Proposition 3 (Comparison Principle). If

Qu =
∑

aij(∇u)∂i∂ju+ b(
i,j

∇u)

is a quasilinear elliptic PDE, where aij are positive definite and a, b
2

∈ C1 of ∇u, then if u,w ∈
C (Ω), u ≤ w on ∂Ω, Qu ≥ Qw on Ω, then u ≤ w on Ω

Proof of strict case. We want to show that u − w ≤ 0 on Ω given that u − w ≤ 0 on ∂Ω and
Q(u− w) > 0. Suppose x0 is an interior maximum. Then, ∇u(x0) = ∇w(x0) = v0. Then,∑

aij(v0)∂i∂j(u
i,j

− w)(x0) > 0,

but this is impossible at a local maximum.
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