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open

For Lipschitz u : B := B

n

1 (0) ! R and ⌦ ⇢ B, define

A(u;⌦) = Area (graphu|⌦) =

Z
1 + ,

⌦

|Du|

2

where, by ‘area’, we mean n-dimensional Hausdor↵

p

measure. The notation A(u)
simply means Area (graphu). It can be established (firstly for C1 functions using
integration by parts and duality and then by approximating a Lipschitz function in
the L

1 norm by a sequence of C1 functions) that for any Lipschitz u : B ! R, we
have

(1) A(u) = sup g

n+1 + u div(g1, ..., gn).
g2C

1(B,Rn+1):

Z

B

c
kgk 11

From here one can easily deduce that A is strictly convex on L and lower semicon-
tinuous with respect to weak L

1 convergence.
Given f 2 C

2(@B), if u 2 C

2(B) is such that u|

@B

= f and A(u)  A(ũ) for
any ũ 2 C

2(B) with ũ|

@B

= f , then u solves the Dirichlet problem for the Minimal
Surface Equation, i.e.

Du

Mu := div

 
p
1 + |Du|

2

!
= 0 in B

u = f on @B

Write L

L

for the set of all Lipschitz functions u : B ! R with u|

@B

= f and
Lipu  L and write a

L

:= inf
ũ L A(ũ). The symbols and a are defined similarly,2L L

but without the condition that Lipu  L.

Lemma 1. If L

L

= ;, then exists u

L

2 L

L

such that A(u
L

) = a

L

and such that if

Lipu
L

< L, then A(u
L

) = a

Proof. Since L

L

= ;, we can take a sequence {u

j

}

1
j=1 2 L

L

with A(uj) ! a

L

as
j ! 1. The fact that Lipuj

 L for every j means that {uj

}

1
j=1 is equicontinuous

and for su�ciently large j, this sequence must also be uniformly bounded (why?).
Therefore the Arzela – Ascoli theorem implies that there exists v 2 L

L

and a
subsequence {j

0
} of {j} such that u

j

0
! v uniformly as j ! 1. Setting u

L

:= v,
the first claim follows from the lower semicontinuity of A with respect to weak L

1

convergence.
Now given ũ 2 L observe that (tu

L

+ (1� t)ũ)|
@B

= f for all t 2 (0, 1) and that
Lip(tu

L

+(1� t)ũ)  k for su�ciently small t > 0. Thus for su�ciently small t > 0
we have (tu

L

+ (1� t)ũ) 2 L

L

whence A(u
L

)  A(tu
L

+ (1� t)ũ). The convexity
of A then implies that A(u

L

)  tA(u
L

)+ (1� t)A(ũ), from which the second claim
follows. ⇤
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open

For ⌦ ⇢ B, write L

L

(⌦) for the set of all Lipschitz functions u : ⌦ ! R with
Lipu  L.

We will need more terminology for our next result: A function u 2 L

L

(⌦) is
called a supersolution (resp. subsolution) in L

L

(⌦) if for every ũ 2 L

L

(⌦) with
ũ|

@⌦ = u|

@⌦ and ũ � u (ũ  u) we have that A(ũ;⌦) � A(u;⌦). In particular, a
minimizer in L

L

(⌦) (i.e. a function the area of the graph of which is smallest among
competitors with the same boundary values) is both a super- and a subsolution.

Lemma 2. For ⌦ ⇢ B, let v and u be super- and subsolutions in L

L

(⌦). If u  v

on @⌦, then u  v in ⌦.

Proof. Suppose for the sake of contradiction, that S = {x 2 ⌦ : v(x) < u(x)} = ;

and write m = min{u, v}. Since m 2 L

L

(⌦), m|

@⌦ = u|

@⌦ and m � u in ⌦, the
fact that u is a subsolution in L

L

(⌦) means that A(u;⌦)  A(m;⌦), which implies
that A(u;S)  A(v;S). Now, the strict convexity of the area functional tells us
that

(2) A( 12u+ 1
2v;S) <

1 1
2A(u;S) + 2A(v;S)  A(v;S).

But, since w = max{ 1
2u + 1

2v, v} satisfies w 2 L

L

(⌦), w|
@⌦ = v|

@⌦ and w � v in
⌦, the fact that v is a supersolution means that A(v;⌦)  A(w;⌦), which implies
that A(v;S)  A( 1 1

2u+ 2v;S), contradicting the strict inequality in (2). ⇤
Corollary 3. Let u and v be respectively a subsolution and supersolution in L

L

(⌦).
Then

sup[u(x) v(x)] = sup [u(x) v(x)].
x

�

2⌦ x @⌦
�

2

Proof. For every ↵ 2 R, the function v(x) + ↵ is also a supersolution and for any
x 2 @⌦, we clearly have u(x)  v(x)+sup

y @⌦[u(y)�v(y)]. The result now follows2
from the previous lemma. ⇤

We can now reduce our goal of bounding the Lipschitz constant to a boundary
estimate:

Lemma 4. With u

L

as in Lemma 1 we have

|u

L

(x)� u

L

(y)
(3) Lipu

L

= sup
|

x2B, y2@B

|x� y|

Proof. Let x1, x2 be distinct points in B = B1(0). Both u and the function x 7!

u(x+x2�x1) minimize area in L

L

(B1(0)\B1(x1�x2)) and so both functions are
supersolutions and subsolutions in L

L

(B1(0) \B1(x1 � x2)). Applying corollary 3
in the domain B1(0)\B1(x1 �x2) and with u(x+x2 �x1) in place of v(x) implies
that there exists z 2 @(B1(0) \B1(x1 � x2)) for which

|u(x1)� u(x2)|  |u(z)� u(z + x2 � x1)|.

At least one of z and z+x2 �x1 belongs to @B, so on dividing by |x2 �x1|, we get
the result. ⇤
Proposition 5 (Existence of Barriers). Given f 2 C

2(B), there exist constants c1,

c2 and r > 0 (depending only on f and n) such that v : B1(0) \B1 (0) R given�r

!

by v(x) = f(x) + c1 log(1 + c2dist(x, @B)) has the following properties.

(1) v

+

+
|

@B

= f |

@B

.

(2) v |

@B1�r(0) � sup
@B

f .
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MINIMAL GRAPHS 3

(3) v

+
is a supersolution in L(B1(0) \B1�r

(0)).

Sketch of Proof. Try v

+(x) = f(x)+ (d(x)), for some  2 C

2([0, 1� r]) satisfying
 (0) = 0,  0

� 1,  00
< 0 and  (1� r) � 2 sup⌦ |f |. Such a v

+ will automatically
satisfy the first two conditions above. Then one computes (1 + |Dv|

2)3/2Mv

+ and
using the fact that �dist(x, @B) < 0 near @B deduces that (1 + |Dv|

2)3/2Mv

+


 

00 + C 

02. Choosing  as above su�ces to ensure that this last expression is less
than zero, which implies that v+ is a supersolution.

The function v here is called an ‘upper barrier’. If one take the negative of the
function obtained by applying this Proposition with �f in place of f , one gets a
function v

� satisfying

(1) v

�
|

@B

= f |

@B

.
(2) v

�
|

@B1 r(0)  inf
@B

f .�

(3) v

� is a subsolution in L(B1(0) \B1�r

(0)).

Such a function is called a ‘lower barrier’.
In more general domains, the geometry of the boundary of the domain plays an

important role: For a C

2 domain ⌦, we would first need to show that d 2 C

2({x :
d(x) < r} \ ⌦) for su�ciently small r > 0 and then we would need to assume that
@⌦ were mean convex because this is what implies in general that �d  0 in a
neighbourhood of the boundary of ⌦ such as {x : d(x) < r}\⌦. See [GT01, §14.6].
Armed with these facts, one can similarly prove the existence of functions v± that
satisfy analogous conclusions in the domain {x : d(x) < r} \⌦. If the boundary of
⌦ is not mean convex, then there is smooth boundary data for which the Dirichlet
problem cannot be solved.

Theorem 6. Given f 2 C

2(@B), there exists u 2 L with A(u)  A(ũ) for all

ũ 2 L

Proof. By solving the Dirichlet problem for the Laplacian with boundary values f ,
we can ensure that L

L

is non-empty for some su�ciently large L and assume that
f 2 C

2(B). Let us also pick L > Lip v+.
By applying proposition 5 with �f in place of f , we get another function w :

B1(0) \B1 r

(0) ! R (a ‘lower barrier’) for which�

(4) v

�(x)  inf f
@B

 u(x)  sup f
@B

 v

+
.

on @B1 r

(0). Since u

L

is minimizing in� L

L

(B1(0) \ B1�r

(0) and since �w is a
subsolution in B1(0) \ B1�r

(0), Lemma 2 implies that v

�
 u  v

+ on B1(0) \
B1 r

(0). Then, using the fact that u = w = v on @B (0), we have� � 1

(5) |u(x)� u(y)|  (Lip v)|x� y|

for every x 2 B1(0) \B1 r

(0), y 2 @B. On the other hand, if x 2 B1 r

(0), we have� �
that

|u(x)� u(y)|  max

⇢
sup f � u(y), u(y)
@B

� inf f
@B

�
 Lip v,

(using (2) in the defining properties of v±) which shows that (5) holds for all x 2 B.
Then, by lemma 4 we have Lipu  Lip v < L and so the conclusion follows from
Lemma 1. ⇤
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Regularity of Lipschitz Weak Solutions

In this section we will use notions of weak derivatives and Sobolev spaces to
discuss the regularity properties of the Lipschitz function the existence of which is
asserted by Theorem 6. We will focus on showing that u 2 C

1,↵
loc

(B). The reader
is directed to [Eva09, Chapter 5] or [GT01, Chapter 7] for an introduction to weak
derivatives and Sobolev spaces.

The function u the existence of which is asserted by Theorem 6 satisfies

d

(6) 0 = +
dt =0

A(u t⌘),
t

from which a short calculation give

���

(7) 0 =

Z
s that

Du ·D⌘

,

B

1 + |Du|

2

for every ' 2 C

1
c

1(⌦). Any function u 2

p

W

,2(B) that satisfies (7) is called a weak
solution of the minimal surface equation.

Di↵erentiating the Equation. Suppose that we were able to show that u

W

2,2(B). Now if we set w = D u for some k, by assumption w 2 W

1,2
2

loc

k

(B). Then,
replacing ⌘ by D

k

⌘ as a tes
Z
t function in (7), we have

p D

i

u

D (
B

1 + | |

i

D

k

⌘) = 0.
Du

2

Integrating by parts, we obtain
Z

ã

ij

(x)D
j

wD

i

⌘ = 0,
B

where
�

ij

D

i

uD

j

u

ã

ij

(x) = .

1 +
�

|Du|

2 (1 + |Du|

2)3/2

Using the fact that u is Lipsc

p

hitz, it is easy to check that these coe�cients are
bounded and uniformly elliptic (i.e. there exist c, C > 0 such that c

2
|⇠|

2
 ã

ij

(x)⇠
i

⇠

j

 C|⇠| 8 x 2 B1 and ⇠ 2 Rn). Thus on any smaller ball B0
1,2

⇢ B, we have that w
is indeed a W weak solution to a uniformly elliptic 2nd order PDE in divergence
form with bounded, measurable coe�cients. From here, De Giorgi-Nash-Moser
Theory tells us that w is locally Hölder continuous. So, provided that u 2 W

2,2
loc

(B),

we have that u 2 C

1,↵
loc

(B). Let us establish the former.

Lemma 7. Let u be a Lipschitz weak solution to the minimal surface equation in

the domain ⌦. Then u 2 W

2,2
loc

(⌦).

Proof. To highlight the salient points of the proof define F : Rn

! Rn by F (p) =
p(1 + |p|

2)�1/2 and observe that

(1) @F

i j

@p

= @F

j @p

for all 1
i

 i, j  n.

(2) c|⇠|

2


@F

i 2 n

R i j 1
@p

(Du(x))⇠ ⇠  C|⇠| 8 x 2 B and ⇠ 2 R .
j

(3) 0 = F

i

(Du)D l 1
i

⌘ for al ⌘ 2 W

,2
⌦ 0 (⌦).

Fix a direction e

k

in the standard orthonormal basis. For ' 2 C

c

1(⌦) and h > 0
such that |h| < 1

2dist(@⌦, supp'), set ⌘ = ��h('2�h

u) where

h h

f(x+ he

k

)
(8) (� f)(x) := (�

k

f)(x) :=
� f(x)

.

h
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Note thRat the followinRg ‘integration by parts’ formula for these di↵erence quotients
holds: f��h

g = � �h

fg, so on plugging ⌘ in as a test function we get that

(9)

Z
�h

F

i

(Du)D
i

('2�h

u) = 0.
⌦

Using the fundamental theorem of calculus followed by the chain rule

1

(10) �h

d

F (Du) = h

�1

Z
F (Du+ th�h

i i

Du)dt
0 dt

=

Z 1
@F

i(11) (Du+ th� h

h

Du)dtD
j

� u

0 @p

j

1
and therefore on writing ✓ :=

R
@Fi

ij

@p

(Du + th�h

Du)dt and v := �h

u we have
0 j

that (9) reads:

(12)

Z
✓

ij

D

j

vD

i

('2
v) = 0.

⌦

Now fix ⌦0 b ⌦ and insist that ' ⌘ 1 on ⌦0 and 0  '  1 on ⌦. Consider ⌦00 b ⌦0

and pick h such that |h| < dist(⌦00
, @⌦0). One can check (using (2)) that there

exists constants c, C such that

c|⇠|

2
 ✓

ij

(x)⇠
i

⇠

j

 C|⇠|

2
.

for all x 2 ⌦0. We now compute:

c

Z
Dv

2
c D('v) 2 because ' 1 on ⌦00

⌦00
| | 

Z

⌦0
| | ⌘



Z
✓

ij

D

j

(v')D
i

(v')
⌦0

=

Z
✓

2
ij

D

j

'D

i

'v + 2'vD
j

vD

i

'+ '

2
D

j

vD

i

v using ✓
ij

= ✓

ji

,

Z⌦0

= ✓

⇥

ij

D

j

'D

i

'v

2 +

Z
✓

ij

D

j

vD

i

('2
v) using th

⇤

e product rule,
⌦0 ⌦

=

Z
✓

2
ij

D

j

'D

i

'v from (12)
⌦0

 C

Z
v

2

⌦0
|D'|

2

 K,

where the final bound is achieved using the fact that u is Lipschitz and the constant
K depends on dist(⌦0

, @⌦). From here we can apply the standard results about
di↵erence quotients, e.g. [Eva09, Theorem 3, §5.8.2] or [GT01, Lemma 7.24] to
deduce that u 2 W

2,2
loc

(⌦0), hence u 2 W

2,2
loc

(⌦). ⇤
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