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In the past few lectures we focused on solutions to the linear homogeneous Schrödinger equation:

∂tu = i∆u (1)

with u ∈ C2(Rd × R). If u satisfies the initial condition u(x, 0) = u0(x) (for sufficiently well-behaved u0),

the solution u is given for all times t ∈ R by

u(x, t) = eit∆u0 :=
(
eit(2πiω)2 û0

)
.̌

We have developed a variety of bounds for such solutions, which include:

(A)
∥∥eit∆u0

∥∥
2 = ‖u0L

‖L2 for all t
x x

∈ R.

(B)
∥∥eit∆ d/2

u0

∥∥ t
−

u0L L1 for all t = 0.∞
x

. | | ‖ ‖
x

(C) Interpolation between (A) and (B).

The goal of this lecture is a proof of the following theorem via a combination of (A), (B), and (C):

Theorem 1 ((Strichartz)). If u solves (1) and u(x, 0) = u0(x),

∥∥eit∆u0

∥∥
σ . ‖u0 ,

Lx,t
‖L2 (2)

x

2(d+2)where σ = .d

To understand the strengths and weaknesses of the bounds we already have, let use consider a few specific

cases.

Case 1. u0 ∈ Cc∞(Bd(1)) with 0 ≤ u0 ≤ 1 and u0 = 1 on Bd 1 .2

We first note that u0 pL 1 for all p [1, ]. We have

(
sho

)
wn in previous lectures that qualitiatively

x

eit∆
‖ ‖ ∼ ∈ ∞

u0 will spread out as t evolves forward. For t ≥ 1, |u(x, t)| ∼ t−d/2 for |x| ≤ t, and u(x, t) decays rapidly

for |x| ≥ t.
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(A) shows that
∥∥eit∆u0

∥∥ ∥∥ 2 ∼ 1 for all t ∈ (it must be sharp, since it’s an equality).
x

(B) shows that .

|t| < 1.

∥ L

eit∆u0
∥
L∞
x

∣∣ ∣ R, which is sharp

t−d/2∣ for all t = 0. This is sharp for |t| ≥ 1, but is pretty useless when

(C) has the same effectiveness as (B).

To expand on this example, consider a slightly more general case:

Case 2. u d
0 ∈ Cc∞(B (R)) with R > 0, 0 ≤ u0 ≤ 1, and u0 = 1 on Bd R .2

Now (B) and (C) work well for |t| ≥ R2, but are weak for t

( )
∈ (−R2, R2). This weakness stems from

“focusing.” Any L∞ bound on u must account for the possibility that u is focusing, so that u concentrates

in a small region with large values at some future time. We have studied such cases before; a standard

example is w0 = e−iR∆u0 with the u0 from Case 1. Then
d

|w d/
0| ∼ R− 2 on Bd(R), while eiR∆w0 ∼ 1 on

B (1). In this situation (B) is sharp for t ∼ R. The focusing with eit∆w0 ∼ 1 only occurs

∣
over

∣
a small

time interval, say for t ∈ [−1, 1]. However, our application of (B) does

∣
not pr

∣
event focusing

∣
from happ

∣
ening

over an extended period of time, for instance for all t

∣ ∣
∈ [R, 2R].

Such a “long focus” is precisely the sort of behavior disallowed by Theorem 1. The Lσ bound on space

and time may permit a focus during a small subset of times, but not over a large time interval. In fact, (B)

already controls the length of the focus in Case 2. If we suppose that eiR∆w0 is concentrated in Bd(1), we

may use eiR∆w0 as initial data in Case 1 to show that eit∆w0 will not remain focused when |t−R| & 1. In

other words, we may obtain more information about solutions to (1) by using eit∆u0 as initial data in (B)

and concluding a bound about eis∆u0 for s = t. The proof of Theorem 1 applies (B) to all such pairs (t, s).

We first recall the L2-unitarity of eit∆:

Lemma 2.
〈
eit∆f, g

〉
Rd =

〈
f, e−it∆g

Proof. By the definition of the L2-inner

〉
.Rd

product on Rd and Plancherel’s theorem:

〈
eit∆f, g

〉 2 ˆ¯
d =

∫
eit∆f ḡ =

∫
eit(2πiω) f ĝ =

∫
f̂ e−it(2πiω)2 ĝ = f e−it∆g = f, e−it∆g .R R

Rd Rd Rd

∫
Rd

〈 〉
d

With this unitarity we may now proceed with the proof of Strichartz:

Proof (Thoremm 1). By duality,

∥∥eit∆u0

∥∥ ¯
Lσ

= sup eit∆u0F ,
x,t ‖F‖ d

σL
′ =1

∫
R

x,t
×R

where σ′ is the dual exponent of σ satisfying 1 + 1 = 1. By Lemma 2,σ σ′

sup

∫
eit∆ ¯u F = sup

∫ 〈
eit∆0 u0, Ft

〉
dt = sup

∫ 〈
u , e−it∆0 Ft

〉
dt = sup

〈
u0, e−it∆Ft dt .

‖F‖ ′ =1 RdσL
R R

x,t
× R

∫ 〉

Hence by Cauchy-Schwarz: ∥∥eit∆u0

∥
sup

Lσx,t
≤ ‖u0‖L2

x

∥∥∥∫∥ ∥ e−it∆Ft

∥∥∥∥ .
F 2
x

2
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It therefore suffices to check that

sup e−it∆Ft . 1.
‖F‖ 2

σL
′ =1
x,t

∥∥∫ ∥∥
Fx

We prove this separately as its own lemma:

∥∥ ∥∥

Lemma 3. ∥∥∥∫∥ e−it∆Ft

∥∥∥∥ .
F 2
x

‖F‖Lσ′ .x,t

Proof.∥∥∫∥∥ e−it∆F

∥∥2 〈∥ =

∫
F dt,

∫∥ e−it∆ e−is∆ e−itt t Fs ds

〉
=

∫∫
∆Ft, e

−is∆Fs dtds = Ft, e
i(t−s)∆Fs dtds.

L2
x

R R R2

〈 〉 ∫∫
R2

〈 〉
This expression effectively measures the interaction between all pairs (t, s), as highlighted earlier. Now if

G(x, t) =

∫
ei(t−s)∆Fs(x) ds,

R

we may write∥∥∫ 2

e−it∆Ft

∥∥
=

F 2
x

∫∫∥∥ ∥ 〈∥ Ft, e
i(t−s)∆Fs

〉
dtds =

∫ 〈
¯Ft, e

R2

∫
i(t−s)∆Fs ds

R

〉
dt =

∫
FG.

R Rd×R

By Hölder, ∥∥∫ ∥∥∥ e−it∆Ft
∥2∥ ∥∥ ≤ ‖F‖Lσ′ ∥ .

x,t

∥∥Ḡ
Lσx,t

L2
x

Finally, by the Duhamel bound derived in the previous lecture,
∥∥Ḡ∥∥

Lσ
. ‖F‖Lσ′ . Hence

x,t x,t∥∥∫∥∥ e−it∆Ft

∥∥2∥∥ . 2
F Lσ

′ .
x,t

L2
x

‖ ‖

In fact, Lemma 3 is closely related to the inhomogeneous Schrödinger equation, and is significant enough

that it may be restated as its own theorem:

Theorem 4. If ∂tu = i∆u+ F with F ∈ Cc∞(Rd × R) and u vanishes before the support of F ,

‖u(x, 0)‖L2
x
. ‖F‖Lσ′ .x,t

3



MIT OpenCourseWare
http://ocw.mit.edu

18.156 Differential Analysis II: Partial Differential Equations and Fourier Analysis
Spring  2016

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu/

