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In the past few lectures we focused on solutions to the linear homogeneous Schrodinger equation:
Oru = iAu (1)

with u € C2(R? x R). If u satisfies the initial condition u(z,0) = ug(z) (for sufficiently well-behaved uy),
the solution u is given for all times ¢t € R by

u(z,t) = ety = (e“@”“’)zao)i

We have developed a variety of bounds for such solutions, which include:

(A) ||6“AU0||L§ = |[uol| 2 for all t € R.

(B) [l uo|l o S 117" uo ., for all ¢ # 0.

(C) Interpolation between (A) and (B).

The goal of this lecture is a proof of the following theorem via a combination of (A), (B), and (C):

Theorem 1 ((Strichartz)). If u solves (1) and u(x,0) = ug(x),
itA

e uoll 5 S ol 2)

where o = 2(%‘2).

To understand the strengths and weaknesses of the bounds we already have, let use consider a few specific

cases.
Case 1. ug € C°(B%(1)) with 0 <up < 1 and ug =1 on B% (3).

We first note that |lug|[;» ~ 1 for all p € [1,00]. We have shown in previous lectures that qualitiatively

e g will spread out as t evolves forward. For ¢t > 1, |u(z,t)| ~ t~%?2 for |z| < t, and u(x,t) decays rapidly

for |x| > t.



(A) shows that HeimUOHLg ~ 1 for all ¢ € R, which is sharp (it must be sharp, since it’s an equality).

(B) shows that ||6”Au0HLm < ‘t*d/2| for all ¢ # 0. This is sharp for |[¢| > 1, but is pretty useless when
lt] < 1. ’

(C) has the same effectiveness as (B).

To expand on this example, consider a slightly more general case:
Case 2. ug € CZ(BYR)) with R >0, 0 < ug < 1, and ug = 1 on B¢ (£).

Now (B) and (C) work well for [t| > R2, but are weak for ¢t € (—R?, R?). This weakness stems from
“focusing.” Any L bound on u must account for the possibility that « is focusing, so that u concentrates
in a small region with large values at some future time. We have studied such cases before; a standard
example is wy = e~*fAug with the uo from Case 1. Then |wo| ~ R=%2 on B4(R), while |e'f%wo| ~ 1 on
B4(1). In this situation (B) is sharp for t ~ R. The focusing with ‘eimwo‘ ~ 1 only occurs over a small
time interval, say for ¢t € [—1,1]. However, our application of (B) does not prevent focusing from happening
over an extended period of time, for instance for all ¢t € [R, 2R].

Such a “long focus” is precisely the sort of behavior disallowed by Theorem 1. The L? bound on space
and time may permit a focus during a small subset of times, but not over a large time interval. In fact, (B)
already controls the length of the focus in Case 2. If we suppose that e'*®wj is concentrated in B%(1), we
may use e'*®w as initial data in Case 1 to show that e*“wy will not remain focused when |t — R| > 1. In
other words, we may obtain more information about solutions to (1) by using e”*®ug as initial data in (B)
and concluding a bound about e**?uq for s # t. The proof of Theorem 1 applies (B) to all such pairs (¢, s).

We first recall the L2-unitarity of e*4:

Lemma 2. <6“Af,g>Rd = <f7 67”A9>Rd-

Proof. By the definition of the L?-inner product on R? and Plancherel’s theorem:

. . . SN2 A= AT 5 < —_— i
<6’LtAf’ g>Rd _ / eztAfg _ / ezt(27rzw) fg — f efzt(Qﬂ'u,J)Z _ / f efztAg — <f7 e tAg>Rd )
Rd Rd R4 Rd

With this unitarity we may now proceed with the proof of Strichartz:

Proof (Thoremm 1). By duality,

le*uoll,. = sup / ¢y F,
zt \|F|\Lglt:1 RixR

where ¢’ is the dual exponent of o satisfying % + % = 1. By Lemma 2,

sup / Py F = sup/ <eimu0, Ft> dt = sup/ <u0, e*itAFt> dt = sup <u0,/eitAFt dt> .
17, o =1 JRIXR R R
z,t

Hence by Cauchy-Schwarz:

Heimu()HLg‘t < ||u0||L?T sup H/e‘itAFt

F2



It therefore suffices to check that
<1.
2

sup
IF I qr =1

/ efitA Ft

We prove this separately as its own lemma:

H/eitAFt
Proof.

2
H/e‘itAFt = </ e AR, dt,/e—“AFs ds> = // (e7"AF, e *2F,) dtds = // <Ft7ei(t_s)AFs> dtds.
Lg R R R2 R2

This expression effectively measures the interaction between all pairs (¢, s), as highlighted earlier. Now if

Lemma 3.

<
. Sl

G(z,t) = / A E () ds,
R

we may write

H/eitAFt

By Holder,

2
:// <Ft,ei<t*S>AFs> dtds—/<Ft,/ei(ts)AFs ds> dt:/ FG.
F2 R? R R RéxR
) 2
H/e—ztAFt

< HFHLg’t HGHLg, :
12 ,
Finally, by the Duhamel bound derived in the previous lecture, ||G||,, < I[IF||,. . Hence
x,t x,t

H/e—itAFt

2
2
<IFIE, -

In fact, Lemma 3 is closely related to the inhomogeneous Schrédinger equation, and is significant enough

that it may be restated as its own theorem:

Theorem 4. If Q;u = iAu+ F with F € C®°(R? x R) and u vanishes before the support of F,

e, 0)l1 2 S 1l g, -
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