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11. Free field theories in higher dimensions 

11.1. Minkowski and Euclidean space. Now we pass from quantum mechanics to quantum field 
theory in dimensions d ≥ 1. As we explained above, we have two main settings. 

1. Minkowski space. Fields are functions on a spacetime VM , which is a real inner product space of 
signature (1, d  − 1). This is where physical processes actually “take place”. The symmetry group of V , 
G = SO(1, d  − 1), is called the Lorenz group; it is the group of transformation of spacetime in special 
relativity. Therefore, field theories in Minkowski space which are in an appropriate sense “compatible” 
with the action of G are called relativistic. 

Recall some standard facts and definitions. The light cone in V is the cone described by the equation 
|v|2 = 0,  where  |v|2 := (v, v). Vectors belonging to the light cone are called lightlike. The light cone 
divides the space V into spacelike vectors |v|2 < 0 (the outside of the cone), and timelike vectors 
|v|2 > 0 (inside the cone). We will choose one of the two components of the interior of the cone and 
call it positive; it will be denoted by V+. The opposite (negative) component is denoted by V−. The  
group of g ∈ SO(V ) =  SO(1, d  − 1) which preserve V+ is denoted by SO+(1, d  − 1); it is the connected 
component of the identity of the group SO(1, d  − 1) (which has two connected components). 

Often (e.g. when doing Hamiltonian field theory) it is necessary to split V in an orthogonal direct 
sum V = Vs ⊕ R of space and time. In this decomposition, the space Vs is required to be spacelike 
(i.e. negative definite), which implies that the time axis R has to be timelike (positive definite). Note 
that such a splitting is not unique, and that fixing it breaks the Lorenz symmetry SO+(1, d  − 1) down 
to the usual rotation group SO(d − 1). To do explicit calculations, one further chooses Cartesian 
coordinates x1, . . .  , xd−1 on Vs and t on the time axis R. 

2. Euclidean space. Fields are functions on a spacetime VE , which is a positive definite inner product 
space. It plays an auxiliary role and has no direct physical meaning, although path integrals computed 
in this space are similar to expectation values in statistical mechanics. 

The two settings are related by the “Wick rotation”. Namely the Euclidean space VE corresponding 
to the Minkowski space VM is the real subspace in (VM )C consisting of vectors (it, x1, . . .  , xd−1, where  
t and xj are real. In other words, to pass to the Euclidean space one needs to make a change of variable 
t → it. Note that under this change, the standard metric on the Minkowski space, dt2 − 

� 
dx2 

i , goes  
into a negative definite metric −dt2 − 

� 
dx2 

i . However, the minus sign is traditionally dropped and one 
considers instead the positive metric dt2 + 

� 
dx2 on VE .i 

11.2. Free scalar bosons. Consider the theory of a free scalar bosonic field φ of mass m. The pro-
cedure of quantization of this theory in the Lagrangian setting is a straightforward generalization 
from the case of quantum mechanics. Namely, the Lagrangian for this theory in Minkowski space is 

1L = 2 ((dφ)2 −m2φ2), and the Euler-Lagrange equation is �φ = −m2φ, where  � is the D’Alambertian, 
∂2� = ∂t2 − 

� ∂2 
. Thus to define the corresponding quantum theory, we should invert the operator i ∂x2 

i 
2� + m . As in the quantum mechanics case, this operator is not invertible (0 is in the spectrum), so 

we should proceed using the Wick rotation. 
After the Wick rotation (i.e. transformation t → it), we arrive at the following Euclidean Lagrangian: 

1LE = 2 ((dφ)2+m2φ2), and the Euler-Lagrange equation is ∆φ = m2φ. So to define the quantum theory, 
i.e. the path integral 

φ(x1) · · ·φ(xn)e −S(φ)Dφ 

2(where S = L), we now need to invert the operator A = −∆ +  m . The operator A−1 is an integral 
operator, whose kernel is G(x − y), where G(x) is the Green’s function, i.e. the fundamental solution 
of the differential equation 

−∆G + m 2G = δ 

To solve this equation, note that the solution is rotationally invariant. Therefore, outside of the 
origin, G(x) =  g(|x|), where g is a function on (0, ∞) such that 

−g ′′ − 
d − 1 

g ′ + m 2 g = 0  
r 
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(where the left hand side is the radial part of the operator A). This is a version of the Bessel equation. 
2−d 
2If m >  0, the basis of solutions is r J± 2−d (imr). (Actually, these functions are elementary for odd d).

2 

There exists a unique up to scaling solution, which decays at infinity, namely, 
2−d 
2g = Cr (J 2−d (imr) +  idJ− 2−d (imr)), (d �= 2). 

2 2 

For d = 2, this expression is zero, and one should instead take the limit of the right hand side divided 
by d − 2 as  d → 2 (which will generate a logarithmic factor ln r). The normalizing constant C can be 
found from the condition that AG = δ. 

Remark. It is easy to check that for d = 1 this function equals the familiar Green’s function for 
−mr /2m.quantum mechanics, e

2−d for If m = 0 (massless case), the basis of solutions is: 1, r  for d = 1,  1, ln r for d = 2,  and  1, r
d >  2. Thus, if d ≤ 2, we don’t have a decaying solution and thus the corresponding quantum theory 
will be deficient: it will not satisfy the clustering property. On the other hand, for d >  2 we have  a  
unique up to scaling decaying solution g = Cr1−d . The constant C is found as in the massive case. 

The higher correlation functions are found from the 2-point function via the Wick formula, as usual. 
We should now note a fundamental difference between quantum mechanics and quantum field theory 

in d >  1 dimensions. This difference comes from the fact that while for d = 1, the Green’s function 
2−dG(x) is continuous at x = 0,  for  d >  1 it is singular at x = 0.  Namely,  G(x) behaves like C|x| as 

x → 0 for  d >  2, and as C ln |x| as d = 2.  Thus  for  d >  1, unlike the case d = 1, the path integral 

φ(x1) · · ·φ(xn )e −S(φ)Dφ 

(as defined above) makes sense only if xi �= xj . In other words, this path integral should be regarded 
not as a function but rather as a distribution. Luckily, there is a canonical way to do it, since the 
Green’s function G(x) is locally L1 . 

Now we can Wick rotate this theory back into the Minkowski space. It is clear that the Green’s 
function will then turn into GM (x) =  g( |x|2 + iε), The higher correlation functions, as before, are 
determined from this by the Wick formula. 

Actually, it is more convenient to describe this theory “in momentum space”, where the Green’s 
function can be written more explicitly. Namely, the Fourier transform Ĝ(p) of the distribution G(x) 
is a solution of the equation 

2 ˆ G = 1,p G + m 2 ˆ

obtained by Fourier transforming the differential equation for G. Thus,  

ˆ 1 
G(p) =  

p2 + m2 
, 

as in the quantum mechanics case. Therefore, like in quantum mechanics, the Wick rotation produces 
the distribution 

ˆ i 
GM (p) =  

p2 − m2 + iε
, 

which is the Fourier transform of GM (x). 

11.3. Spinors. To consider field theory for fermions, we must generalize to the case of d >  1 the basic 
dfermionic Lagrangian 1ψ dψ . To do this, we must replace dt by some differential operator on V . This  2 dt 

operator should be of first order, since in fermionic quantum mechanics it was important that the 
equations of motion are first order equations. Clearly, it is impossible to define such an operator so that 
the Lagrangian is SO+(V )-invariant, if ψ is a scalar valued (odd) function on V . Thus,  a  fermionic  
field in field theory of dimension d >  1 cannot be scalar valued, but rather must take values in a real 

∗representation S of SO+(V ), such that there exists a nonzero intertwining operator V → Sym2S . This  
property is satisfied by spinor representations. They are indeed basic in fermionic field theory, and we 
will now briefly discuss them (for more detail see “Spinors” by P.Delignee, in “QFT and string theory: 
a course for mathematicians”). 

First consider the complex case. Let V be a complex inner product space of dimension d >  1. Let 
Cl(V ) be the Clifford algebra of V , defined by the relation ξη + ηξ = 2(ξ, η), ξ, η ∈ V . As we discussed, 
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for even d it is simple and has a unique irreducible representation S of dimension 2d/2, while for odd d 
it has two such representations S′, S′′ of dimension 2(d−1)/2 . It is easy to show that the space CL2(V ) 
of quadratic elements of CL(V ) (i.e. the subspace spanned elements of the form ξη − ηξ, ξ, η  ∈ V ) is  
closed under bracket, and constitutes the Lie algebra o(V ). Thus o(V ) acts  on  S (respectively, S′, S′′). 
This action does not integrate to an action of SO(V ), but integrates to an action of its double cover 
Spin(V ). 

If d is even, the representation S of Spin(V ) is not irreducible. Namely, recall that S is the exterior 
algebra of a Lagrangian subspace of V .  Thus is  splits in a direct  sum  S = S+ ⊕ S− (odd and even 
elements). The subspaces S+, S− are subrepresentations of S, which are irreducible. They are called 
half-spin representations. 

If d is odd, the representations S′ and S′′ of Spin(V ) are irreducible and isomorphic. Any of them 
will be denoted by S and called the spinor representation. Thus, we have the spinor representation S 
for both odd and even d, but for even d it is reducible. 

An important structure attached to the spinor representation S is the intertwining operator Γ : V → 
EndS, given by the action of V ⊂ Cl(V ) in  S. This intertwiner allows us to define the Dirac operator 

� ∂
D = Γi 

∂xi 

where xi are coordinates on V associated to an orthonormal basis ei, and  Γi = Γ(ei). This operator 
acts on functions form V to S, and  D2 = ∆,  so  D is a square root of the Laplacian. The matrices Γi 

are called Γ matrices. 
Note that for even d, one has Γ(v) :  S± → S∓, so  D acts from functions with values in S± to 

functions with values in S∓. 
By a spinor representation of Spin(V ) we will mean any linear combination of S+, S− for even d, 

and any multiple of S for odd d. Thus, for every spinor representation we have Γ(v) :  Y → Y ′, where  
S′ := S− and S′ − := S+, and  S′ := S.+ 

Now assume that V is a real inner product space with Minkowski metric. In this case we can define 
the group Spin+(V ) to be the preimage of SO+(V ) under the map Spin(VC) → SO(VC). It a double 
cover of SO+(V ) (if  d = 2, this double cover is disconnected and actually a direct product by Z/2). 

By a real spinor representation of SO+(V ) we will mean a real representation Y such that YC is a 
spinor representation of Spin(VC). 

11.4. Fermionic Lagrangians. Now let us consider Lagrangians for a spinor field ψ with values in 
a spinor representation Y . As the Lagrangian is supposed to be real in the Minkowski setting, we 
will require in that case that Y is real. First of all, let us see what we need in order to write the 
“kinetic term” (ψ, Dψ). Clearly, to define such a term (so that it is nonzero), we need an invariant 
nondegenerate pairing (, ) between Y and Y ′ such that the for any v ∈ V , the bilinear form (x, Γ(v)y) 
on Y is symmetric. 

Let us find for which Y this is possible (for complex V ). The behavior of Spin groups depends on d 
modulo 8. Thus we will list the answers labeling them by d mod 8 (they are easily extracted from the 
tables given in Deligne’s text). 

0. n(S+ ⊕ S−). 
1. nS. 
2. nS+ ⊕ kS−. 
3. nS. 
4. n(S+ ⊕ S−). 
5. 2nS. 
6. 2nS+ ⊕ 2kS−. 
7. 2S. 
Let us now find when we can also add a mass term. Recall that the mass term has the form (ψ, Mψ), 

so it corresponds to an invariant skew-symmetric operator M : Y → Y ∗ . Let us list those Y from the 
above list, for which such nondegenerate operator exists. 

0. 2n(S+ ⊕ S−). 
1. 2nS. 
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2. n(S+ ⊕ S−). 
3. nS. 
4. n(S+ ⊕ S−). 
5. 2nS. 
6. 2n(S+ ⊕ S−). 
7. 2S. 
To pass to the real Minkowski space (in both massless and massive case), one should put the additional 

requirement that Y should be a real representation. 
We note that upon Wick rotation to Minkowski space, it may turn out that a real spinor represen-

tation Y will turn into a complex representation which has no real structure. Namely, this happens for 
massless spinors that take values in S± if d = 2 mod 8. These representations have a real structure for 
Minkowskian V (i.e. for SO+(1, d  − 1)), but no real structure for Euclidean V (i.e. for SO(d)). This is 
quite obvious, for example, when d = 2  (check!).  

One may think that this causes a problem in quantum field theory, where we would be puzzled what 
to integrate over – real or complex space. However, the problem in fact does not arise, since we have 
to integrate over fermions, and integration over fermions (say, in the finite dimensional case) is purely 
algebraic and does not make a distinction between real and complex. 

11.5. Free fermions. Let us now consider a free theory for a spinor ψ : V → ΠY , where  Y is a 
1spinor representation, defined by a Lagrangian L = 2 ((ψ, Dψ) − (ψ, Mψ)), where M is allowed to be 

degenerate (we assume that Y is such that this expression makes sense). The equation of motion in 
∗Minkowski space is Dψ = Mψ. where we have identified Y ′ and Y using the pairing Y × Y ′ → R used 

to define the kinetic term. Thus, to define the corresponding quantum theory, we need to invert the 
operator D − M . As usual, this cannot be done because of a singularity, and we have to consider the 
Wick rotation. 

1The Wick rotation produces the Euclidean Lagrangian L = 2 ((ψ, DE ψ) +  (ψ, Mψ)) (note that the i 
in the kinetic term is hidden in the definition of the Euclidean Dirac operator). We invert DE + M , to  
obtain the Euclidean Green’s function. To do this, it is convenient to go to momentum space, i.e. perform 
a Fourier transform. Namely, after Fourier transform DE turns into the operator ip, where  p = pj Γj , 
and pj are the operators of multiplication by the coordinates pj . Thus, the Green’s function (i.e. the 

12-point function) G(x) ∈ Hom(Y ′, Y  ) is the Fourier transform of the matrix-valued function ip+M . Let  

M † : Y ′ → Y be the operator such that ΓiM = M †Γi. Then, (−ip + M †)(ip + M) =  p2 + M †M , so  
that 

Ĝ(p) =  (p 2 + M †M)−1(−ip + M †). 
This shows that G(x) is expressed through the Green’s function in the bosonic case by differentiations 
(how?). After Wick rotation back to the Minkowski space, we get 

ĜM (p) =  (p 2 − M †M + iε)−1(p + iM †). 

Finally, the higher correlation functions, as usual, are found from the Wick formula. 


