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4 MATHEMATICAL IDEAS AND NOTIONS OF QUANTUM FIELD THEORY 

2. The steepest descent and stationary phase formulas 

Now, let us forget for a moment that the integrals (1,2,3) are infinite dimensional and hence problem-
atic to define, and ask ourselves the following question: why should we expect that when the parameter 
κ or � goes to zero, we recover the usual classical mechanics or field theory? The answer is that this 
expectation is based on the steepest descent (respectively, stationary phase) principle from classical 
analysis: if f(x) is a function in Rd then the integrals g(x)e−f (x)/κdx, g(x)eif (x)/�dx “localize” to 
minima, respectively critical points, of the function f . As this classical fact is of central importance to 
the whole course, let us now discuss it in some detail. 

2.1. The steepest descent formula. Let f, g : [a, b] → R be smooth functions. 

Theorem 2.1. (The steepest descent formula) Assume that f attains a global minimum at a unique 
point c ∈ (a, b), such that f ′′(c) > 0. Then one has 

b 

(4)	 g(x)e −f (x)/�dx = �1/2 e −f (c)/�I(�), 
a √ 

2π √g(c)where I(�) extends  to a smooth function  on  [0, ∞) such that I(0) = 
f ′′ (c) 

. 

Proof. Let I(�) be defined by the equation (4). 
> ε  >  0, and let I1(�) be defined by the same equation, but with 2Let ε 1be a real number, such that 

1
integration over [c − � 

1
2−ε, c  + � 

O(�N ), � → 0 for any N). So it suffices to prove the theorem for I1(�). √ 

2−ε I(�) − I1(� �]. It is clear that ) is “rapidly decaying in ” (i.e. it is 

Further, let us make in the integral defining I1(�) the change of variables y = (x − c)/ �. Then  we  
get 

−ε √ √ 

�)e(f (c)−f (c+y �))/�dy. (5)	 I1(�) =  g(c + y 
−�−ε 

√ 
Now, note that the integrand is a smooth function with respect to � for � ≥√0. Let 

� �
Nat 0 modulo 

I2(�) be the  
same integral as in (5) but with integrand replaced by its Taylor expansion in . 
Then |I1(�) − I2(�)| ≤  C�

N −ε . 
Finally, let I3(�) be defined by the same integral as I2(�) but with limits from −∞ to ∞. Then  

I2(�) − I3(�) is rapidly decaying in �. 
I3(� �

1/2 
�

N −ε 

�. 
Thus, it suffices to show that ) admits a Taylor expansion in modulo , and that the √ 

value at zero is as stated. But we know that I3(�) is a polynomial in Also, the integrals giving 
coefficients of non-integer powers of � are integrals over R of odd functions, so they are zero. So the 
first statement (existence of the Taylor expansion) is proved. The value I3(0) is given by the integral 

∞ 
f ′′ (c)y 2 

g(c) e − 2 dy, 
−∞ 

so it is computed from the well known Poisson integral: 
∞ 2 √ 

e − y 
2 dy = 2π. 

−∞ 

The theorem is proved.	 � 

2.2. Stationary phase formula. This theorem has the following imaginary analog, called the sta-
tionary phase formula. 

Theorem 2.2. Assume that f has a unique critical point c ∈ (a, b), with  f ′′(c) �= 0, and  g vanishes 
with all derivatives at a, b. Then  

b 
if (c)/�I(�),g(x)e if (x)/�dx = �1/2 e 

a √ 
2πe±πi/4 √g(c)where I(�) extends  to a smooth function  on  [0, ∞) such that I(0) =	 , where  ± is the | f ′′ (c)|

sign of f ′′(c). 
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5 MATHEMATICAL IDEAS AND NOTIONS OF QUANTUM FIELD THEORY 

Remark. It is important to assume that g vanishes with all derivatives at the ends of the the 
integration interval. Otherwise we will get some additional boundary contributions. 

Proof. (sketch). The proof is analogous to the real case, but slightly more subtle. The differences are as 
follows. First of all, the Poisson integral is replaced with the (conditionally convergent) Fresnel integral 

∞ 
iy2 √ 

e 2 dy = 2πeπi/4 . 
−∞ 

Further, one should partition g in a sum of two smooth functions, one localized around c on an interval 
of size 2�

1/2−ε, and the other vanishing near c. Next, one needs to show that only the first summand 
if (x)/�matters, by using Riemann’s lemma: if f has no critical points in the support of g then 

a

b 
g(x)e

is rapidly decaying (prove this!). Finally, for g localized around c, ones makes the change of variable 
like in the real case. The statement about existence of Taylor expansion is proved as in the real case, 
and the value at 0 is calculated using Fresnel integral. � 

2.3. Non-analyticity of I(�) and Borel summation. It is very important to note that the Taylor 
series for I(�) is usually not convergent and is only an asymptotic expansion, so that the function I is 
smooth but not analytic at zero. To illustrate this, consider the integral 

∞ 2+x 4 √ − x 

e 2� dx = 2π�
1/2I(�), 

−∞ 

where �
1 

I(�) =  √ 
∞ 

e − y 2+
2 
�y 4 

dy. 
2π −∞ 

The latter integral expands asymptotically as 
∞ 

I(�) =  an�
n , 

n=0 

where 
4n (−1)n 

2n+ 2 Γ(2n + 
2
)/n!. 

11(−1)n ∞
−y 2/2 

2
y
nn! 

dy = √an = √ e 
2π −∞ 2π 

It is clear that this sequence has superexponential growth, so the radius of convergence of the series is 
zero. 

Remark. In fact, the non-analyticity of I(�) is related to the fact that the integral defining I(�) is  
divergent for � < 0. 

Let us now discuss the question: to what extent does the asymptotic expansion of the function I(�) 
(which we can find using Feynman diagrams as explained below) actually determines this function? 
Suppose that Ĩ(�) =  

�
n≥0 an�

n is a series with zero radius of convergence. In general, we cannot 
uniquely determine a function I on [0, ε) whose expansion is given by such a series. However, assume that 
ai are such that the series g(�) =  

�
n≥0 an�

n/n! is convergent in some neighborhood of 0, analytically 
continues to [0, ∞), and has at most exponential growth as � → ∞. In this case there is a “canonical” 
way to construct a smooth function I on [0, ε) with (asymptotic) Taylor expansion Ĩ, called Borel 
summation of Ĩ. Namely, the function I is defined by the formula 

∞ 

I(�) =  g(�u)e −udu 
0 

The fact that I has the Taylor expansion Ĩ follows from the fact that for t >  0 one has 
∞ 

n x e −xdx = n!. 
0 

For example,  consider the  series  Ĩ = 
�

n≥0(−1)nn!�n. Then  g(�) =  
�

n≥0(−1)n
�

n = 1 . Hence, the 1+� 
−u∞ eBorel summation yields I(�) =  0 1+�u du. 

Physicists expect that in many situations perturbation expansions in quantum field theory are Borel 
summable, and the actual answers are obtained from these expansions by Borel summation. The Borel 
summability of perturbation series has actually been established in a few nontrivial examples of QFT. 
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6 MATHEMATICAL IDEAS AND NOTIONS OF QUANTUM FIELD THEORY 

2.4. Application of steepest descent. Let us give an application of Theorem 2.1. Consider the 
integral ∞ 

ts −te dt, s > 0. 
0 

It is well known that this integral is equal to the Gamma function Γ(s + 1). By doing a change of 
variable t = sx, we get  ∞ 

sΓ(s + 1)  
= 

∞ 

x e −sxdx = e −s(x−log x)dx. 
ss+1 

0 0 

Thus, we can apply Theorem 2.1 for � = 1/s, f (x) =  x − log x, g(x) = 1 (of course, the interval [a, b] 
is now infinite, and the function f blows up on the boundary, but one can easily see that the theorem 
is still applicable). The function f (x) =  x − log x has a unique critical point on [0, ∞), which is c = 1,  
and we have f ′′(c) = 1. Then we get √ 

s −sΓ(s + 1)  =  s e 2πs(1 + a1/s + a2/s2 + · · · ). 
This is the celebrated Stirling’s formula. 

2.5. Multidimensional versions of steepest descent and stationary phase. Theorems 2.1,2.2 
have multidimensional analogs. To formulate them, let V be a real vector space of dimension d with a 
fixed volume element dx, and  let  f, g be smooth functions in a closed box B ⊂ V . 

Theorem 2.3. Assume that f has global minimum on B at a unique interior point c, such that f ′′(c) > 
0. Then  

(6) g(x)e −f (x)/�dx = �d/2 e −f (c)/�I(�), 
B 

g(c)where I(�) extends  to a smooth function  on  [0, ∞) such that I(0) = (2π)d/2 √ . 
det f ′′ (c) 

Theorem 2.4. Assume that f has a unique critical point c in B, such that det f ′′(c) �= 0, and that g 
vanishes with all derivatives on the boundary of the box. Then 

if (x)/�dx = �d/2 if (c)/�I(�),(7) g(x)e e 
B 

eπiσ/4 √ g(c)where I(�) extends to a smooth function on [0, ∞) such that I(0) = (2π)d/2 , where  σ | det f ′′ (c)|
f ′′(c).is the signature of the symmetric bilinear form 

Remark. In presence of a volume element on V , the determinant of a symmetric bilinear form is 
well defined. 

The proofs of these theorems are parallel to the proofs of their one dimensional versions. Namely, 
the 1-dimensional Poisson and Fresnel integrals are replaced with their multidimensional versions – the 
Gaussian integrals 

e −B(x,x)/2dx = (2π)d/2(det B)−1/2 , 
V 

for a symmetric bilinear form B >  0, and 

πiσ(B)/4 −1/2 e iB(x,x)/2dx = (2π)d/2 e | det B| , 
V 

for nondegenerate-B. These integral formulas are easily deduced from the one-dimensional ones by 
diagonalizing the bilinear form-B. 


