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4. Matrix integrals 

Let hN be the space of Hermitian matrices of size N . The inner product on hN is given by (A, B) =  
Tr(AB). In this section we will consider integrals of the form 

ZN = �−N 2/2 e −S(A)/�dA, 
hN 

where the Lebesgue measure dA is normalized by the condition 
� 

e−Tr(A2)/2dA = 1,  and  S(A) =  
Tr(A2)/2 − m≥0 gmTr(Am)/m is the action functional. 3 We will be interested the behavior of the 
coefficients of the expansion of ZN in gi for large N . The study of this behavior will lead us to considering 
not simply Feynman graphs, but actually fat (or ribbon) graphs, which are in fact 2-dimensional surfaces. 
Thus, before we proceed further, we need to do some 2-dimensional combinatorial topology. 

4.1. Fat graphs. Recall from the proof of Feynman’s theorem that given a finite collection of flowers 
and a pairing σ on the set T of endpoints of their edges, we can obtain a graph Γσ by connecting (or 
gluing) the points which fall in the same pair. 

Now, given an i-flower, let us inscribe it in a closed disk D (so that the ends of the edges are on 
the boundary) and take its small tubular neighborhood in D. This produces a region with piecewise 
smooth boundary. We will equip this region with an orientation, and call it a fat i-valent flower. The  
boundary of a fat i-valent flower has the form P1Q1P2Q2 . . . PiQiP1, where  Pi, Qi are the angle points, 
the intervals Pj Qj are arcs on ∂D, and  Qj Pj+1 are (smooth) arcs lying inside D (see Fig. 10). 

3-valent flower fat 3-valent flower 

Q1 

P1 

Q3 

P2 

Q2 

P3 

Figure 10 

Now, given a collection of usual flowers and a pairing σ as above, we can consider the corresponding 
fat flowers, and glue them (respecting the orientation) along intervals Pj Qj according to σ. This will 
produce a compact oriented surface with boundary (the boundary is glued from intervals Pj Qj+1). 

We will denote this surface by Γ̃σ , and call it the fattening of Γ with respect to σ. A fattening of 
a graph will be called a fat (or ribbon) graph. Thus, a fat graph is not just an oriented surface with 
boundary, but such a surface together with a partition of this surface into fat flowers. 

Note that the same graph Γ can have many different fattenings, and in particular the genus g of the 
fattening is not determined by Γ (see Fig. 11). 

4.2. Matrix integrals in large N limit and planar graphs. Let us now return to the study of the 
integral ZN . By the proof of Feynman’s theorem, � � g ni �

ni (i/2−1) � 
ln ZN = ( i 

ini ni!
) Fσ , 

n σ 

where the summation is taken over all pairings of T = T (n) that produce a connected graph Γσ , and  
Fσ denotes the contraction of the tensors Tr(Ai) using  σ. 

For a surface Σ with boundary, let ν(Σ) denote the number of connected components of the boundary. 

= N ν(eΓσ ).Proposition 4.1. Fσ 

3Note that we divide by m and not by m!. We will see below why such normalization will be more convenient. 
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Γ1 g = 0 Γ2 g = 0

Γ3 g = 1

Figure 11. Gluing a fat graph from fat flowers

Proof. Let ei be the standard basis of C
N , and e∗i the dual basis. Then the tensor Tr(Am) can be

written as

Tr(Am) =
N�

i1,...,im=1

(ei1 ⊗ e∗i2 ⊗ ei2 ⊗ e∗i3 ⊗ · · · ⊗ eim ⊗ e∗i1 , A
⊗m).

One can visualize each monomial in this sum as a labeling of the angle points P1, Q1, . . . , Pm, Qm on
the boundary of a fat m-valent flower by i1, i2, i2, i3, . . . , im, i1. Now, the contraction using σ of some
set of such monomials is nonzero iff the subscript is constant along each boundary component of �Γσ

(see Fig. 12). This implies the result. �

ei

e∗
j

ej

e∗
k

ek

e∗
l

e∗
m

en

e∗
n

e∗
n

e∗
n

e∗
n

Contraction nonzero iff
i = r, j = p, j = m, k = r,
k = p, i = m,
that is
i = r = k = p = j = m.

Figure 12. Contraction defined by a fat graph.

Let �Gc(n) is the set of isomorphism classes of connected fat graphs with ni i-valent vertices. For�Γ ∈ �Gc(n), let b(�Γ) be the number of edges minus the number of vertices of the underlying usual
graph Γ.

Corollary 4.2.

ln ZN =
�
n

(
�

gni

i )
�

eΓ∈ eGc(n)

Nν(eΓ)�b(eΓ)

|Aut(�Γ)| .

Proof. Let Gfat(n) =
�

Sni � (
�

Z/iZ)ni . This group acts on T , so that �Γσ = �Γgσ, for any g ∈ Gfat

(since cyclic permutations of edges of a flower extend to its fattening). Moreover, the group acts
transitively on the set of σ giving a fixed fat graph �Γσ, and the stabilizer of any σ is Aut(�Γσ). This
implies the result. �

Now for any compact surface Σ with boundary, let g(Σ) be the genus of Σ. Then for a connected fat
graph �Γ, b(�Γ) = 2g(�Γ) − 2 + ν(�Γ) (minus the Euler characteristic). Thus, defining ẐN(�) = ZN (�/N),
we find
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Theorem 4.3. 
eΓ)eΓ) b(�

ln ẐN = ( g ni ) 
� N 2−2g(

i . |Aut(�Γ)|n Γ∈Gc(n) 

This implies the following important result, due to t’Hooft. 

Theorem 4.4. (1) There exists a limit W∞ := limN →∞ 
ln ˆ
N
Z
2 
N . This limit is given by the formula 

ee

� � � �b(

W∞ = ( g ni )i 

eΓ) 

, |Aut(�Γ)|n Γ∈Gc (n)[0] 

where Gc(n)[0] denotes the set of planar connected fat graphs, i.e. those which have genus zero. 
(2) Moreover, there exists an expansion ln ẐN /N 2 = 

� 
g≥0 agN −2g, where  

ee

� � � �b(

ag = ( g ni )i 

eΓ) 

, |Aut(�Γ)|n Γ∈Gc (n)[g]e

and Gc(n)[g] denotes the set of connected fat graphs which have genus g. 

e

Remark 1. Genus zero fat graphs are said to be planar because the underlying usual graphs can 
be put on the 2-sphere (and hence on the plane) without self-intersections. 

Remark 2. t’Hooft’s theorem may be interpreted in terms of the usual Feynman diagram expansion. 
Namely, it implies that for large N , the leading contribution to ln(ZN (�/N )) comes from the terms in 
the Feynman diagram expansion corresponding to planar graphs (i.e. those that admit an embedding 
into the 2-sphere). 

4.3. Integration over real symmetric matrices. One may also consider the matrix integral over 
the space sN of real symmetric matrices of size N . Namely, one puts 

ZN = �−N (N +1)/4 e −S(A)/�dA, 
sN 

where S and dA are as above. Let us generalize Theorem 4.4 to this case. 
As before, consideration of the large N limit leads to consideration of fat flowers and gluing of them. 

However, the exact nature of gluing is now somewhat different. Namely, in the Hermitian case we had 
∗ ∗(ei ⊗ ej , ek ⊗ el ) =  δilδjk , which forced us to glue fat flowers preserving orientation. On the other hand, 

∗in the real symmetric case e = ei, and the inner product of the functionals ei ⊗ ej on the space of i 
symmetric matrices is given by (ei ⊗ ej , ek ⊗ el) =  δik δjl + δil δjk . This means that besides the usual 
(orientation preserving) gluing of fat flowers, we now must allow gluing with a twist of the ribbon by 
180o . Fat graphs thus obtained will be called twisted fat graphs. That means, a twisted fat graph 
is a surface with boundary (possibly not orientable), together with a partition into fat flowers, and 
orientations on each of them (which may or may not match at the cuts, see Fig. 13). 

Figure 13. Twisted-fat graph 

Now one can show analogously to the Hermitian case that the 1/N expansion of ln ẐN (where 
ZN = ZN (2�/N )) is given by the same formula as before, but with summation over the set �ˆ Gtw (n) of  c 
twisted fat graphs: 



� 

� 

� � 

22 MATHEMATICAL IDEAS AND NOTIONS OF QUANTUM FIELD THEORY 

Theorem 4.5. 
eΓ)eΓ) b(�

ln ˆ
� � � N2−2g(

ZN = ( g ni )i . |Aut(�Γ)|n Gtw (n)c 
eΓ∈ 

Here the genus g of a (possibly non-orientable) surface is defined by g = 1 − χ/2, where χ is the 
Euler characteristic. Thus the genus of RP 2 is 1/2, the genus of the Klein bottle is 1, and so on. 

In particular, we have the analog of t’Hooft’s theorem. 

N
Z
2 
N . This limit is given by the formula Theorem 4.6. (1) There exists a limit W∞ := limN →∞ 

ln ˆ

e

� � � �b(

W∞ = ( g ni )i 

eΓ) 

, |Aut(�Γ)|n Gtw (n)[0]c 
eΓ∈ 

Gtwwhere � (n)[0] denotes the set of planar connected twisted fat graphs, i.e. those which have genus c 
zero. 

(2) Moreover, there exists an expansion ln ẐN /N
2 = 

� 
g≥0 agN

−2g, where  

e

� � � �b(

ag = ( g ni )i 

eΓ) 

, |Aut(�Γ)|n eGtw (n)[g]c 
eΓ∈ 

Gtwand � (n)[g] denotes the set of connected twisted fat graphs which have genus g.c 

Exercise. Consider the matrix integral over the spaceqN of quaternionic Hermitian matrices. Show 
that in this case the results are the same as in the real case, except that each twisted fat graph counts 
with a sign, equal to (−1)m, where  m is the number of twistings (i.e. mismatches of orientation at 
cuts). In other words, ln ẐN for quaternionic matrices is equal ln Ẑ2N for real matrices with N replaced 
by −N . 

Hint: use that the unitary group U(N, H) is a real form of Sp(2N), and qN is a real form of the 
representation of Λ2V , where  V is the standard (vector) representation of Sp(2N). Compare to the 
case of real symmetric matrices, where the relevant representation is S2V for O(N), and the case of 

∗complex Hermitian matrices, where it is V ⊗ V for GL(N). 

4.4. Application to a counting problem. Matrix integrals are so rich that even the simplest possible 
example reduces to a nontrivial counting problem. Namely, consider the matrix integral ZN over 
complex Hermitian matrices in the case S(A) =  Tr(A2)/2 − sTr(A2m)/2m, where  s2 = 0 (i.e. we work 
over the ring C[s]/(s2)). In this case we can set � = 1. Then from Theorem 4.4 we get 

Tr(A2m)e −Tr(A2)/2dA = Pm(N), 
hN 

where Pm(N) is a polynomial, given by the formula Pm(N) =  g≥0 εg(m)Nm+1−2g , and  εg(m) is  the  
number of ways to glue a surface of genus g from a 2m-gon with labeled sides by gluing sides preserving 
the orientation. Indeed, in this case we have only one fat flower of valency 2m, which has to be glued 
with itself; so a direct application of our Feynman rules leads to counting ways to glue a surface of a 
given genus from a polygon. 

The value of this integral is given by the following non-trivial theorem. 

Theorem 4.7. (Harer-Zagier, 1986) 
m � � 

Pm(x) =  
(2m)! � m x(x − 1) . . .  (x − p)

2p 

2mm! p (p + 1)!  
. 

p=0 

The theorem is proved in the next subsections. 
Looking at the leading coefficient of Pm, we  get.  

Corollary 4.8. The number of ways to glue a sphere of a 2m-gon is the Catalan number Cm = 
2m 

. m+1 m 
1 
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Corollary 4.8 actually has another (elementary combinatorial) proof, which is as follows. For each 
pairing σ on the set of sides of the 2m-gon, let us connect the midpoints of the sides that are paired by 
straight lines (Fig. 14). It is geometrically evident that if these lines don’t intersect then the gluing will 
give a sphere. We claim that the converse is true as well. Indeed, we can assume that the statement is 
known for the 2m − 2-gon. Let σ be a gluing of the 2m-gon that gives a sphere. If there is a connection 
between two adjacent sides, we may glue them and go from a 2m-gon to a 2m − 2-gon (Fig. 15). Thus, 
it is sufficient to consider the case when adjacent sides are never connected. Then there exist adjacent 
sides a and b whose lines (connecting them to some c, d) intersect with each other. Let us now replace 
σ by another pairing σ′, whose only difference from σ is that a is connected to b and c to d (Fig. 16). 
One sees by inspection (check it!) that this does not decrease the number of boundary components of 
the resulting surface. Therefore, since σ gives a sphere, so does σ′. But  σ′ has adjacent sides connected, 
the case considered before, hence the claim. 

Figure 14. Pairing of sides of a 6-gon. 
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Figure 16 

Now it remains to count the number of ways to connect midpoints of sides with lines without 
intersections. Suppose we draw one such line, such that the number of sides on the left of it is 2k and 
on the right is 2l (so that k + l = m − 1). Then we face the problem of connecting the two sets of 2k 
and 2l sides without intersections. This shows that the number of gluings Dm satisfies the recursion 

Dm = Dk Dl 

k+l=m−1 

In other words, the generating function Dmxm = 1  +  x + · · ·  satisfies the equation f −1 =  xf 2. This  √ 
implies that f = 1− 

2
1
x 
−4x , which yields that Dm = Cm. We are done. 

Corollary 4.8 can be used to derive the the following fundamental result from the theory of random 
matrices, discovered by Wigner in 1955. 
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Theorem 4.9. (Wigner’s semicircle law) Let f be a continuous function on R of at most polynomial 
growth at infinity. Then 

1
lim Trf (A/ 

√ 
N )e −Tr(A2)/2 1 

� 2 

f (x) 4 − x2dx. 
N →∞ N hN 

2π −2 

This theorem is called the semicircle law because it says that the graph of the density of eigenvalues of 
a large random Hermitian matrix distributed according to ‘the “Gaussian unitary ensemble” (i.e. with 
density e−Tr(A2)/2dA) is  a  semicircle.  

Proof. By Weierstrass uniform approximation theorem, we may assume that f is a polynomial. (Exer-
cise: Justify this step). 

Thus, it suffices to check the result if f (x) =  x2m . In this case, by Corollary 4.8, the left hand side � 2 √ 
1is Cm. On the other hand, an elementary computation yields 2π −2 x

2m 4 − x2 = Cm, which implies 
the theorem. � 

4.5. Hermite polynomials. The proof 4 of Theorem 4.7 given below uses Hermite polynomials. So 
let us recall their properties. 

Hermite’s polynomials are defined by the formula 

x 2 dn 
−x 2 Hn(x) =  (−1)n e e . 

dxn 

So the leading term of Hn(x) is  (2x)n . 
We collect the standard properties of Hn(x) in the following theorem. 

Theorem 4.10. (i) The generating function of Hn(x) is f (x, t) =  
� 

Hn(x) tn
n 

! = e2xt−t2 . n≥0 

(ii) Hn(x) satisfy the differential equation f ′′ − 2xf ′ + 2nf = 0. In  other  words,  Hn(x)e−x 2/2 are 
eigenfunctions of the operator L = − 1 ∂2 + 1 x2 (Hamiltonian of the quantum harmonic oscillator) with 2 2 
eigenvalues n + 1 .2 

(iii) Hn(x) are orthogonal: 

1 
� ∞

−x 2 √ e Hm(x)Hn(x)dx = 2n n!δmn
π −∞ 

(iv) One has 

√ 
1 

� ∞ 

e −x 2 x 2mH2k (x)dx = 
(2m)! 

22(k−m) 

π −∞ (m − k)! 
(if k >  m, the answer is zero). 

(v) One has 
r

Hr 
2(x) � r! 

= H2k (x).
2rr! 2k k!2(r − k)!

k=0 

Proof. (sketch) 
(i) Follows immediately from the fact that the operator 

� n dn 

maps a function g(x) to  (−1)n t
n! dxn 

g(x − t). 
(ii) Follows from (i) and the fact that the function f (x, t) satisfies the PDE fxx − 2xfx + 2tft = 0.  
(iii) Follows from (i) by direct integration (one should compute 

� 
R f (x, t)f (x, u)e−x 2 dx using a shift 

of coordinate). 
2m(iv) By (i), one should calculate 

� 
R x e2xt−t2 e−x 2 dx. This  integral  equals  � 2m (2m − 2p)! 

t2p2m x e −(x−t)2 dx = (y + t)2m e −y 2 dy == 
√ 

π 2p 2m−p(m − p)! 
. 

R R p 

The result is now obtained by extracting individual coefficients. 

4I adopted this proof from D. Jackson’s notes 
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(v) By (iii), it suffices to show that 

2r+k1 
Hr 

2(x)H2k (x)e −x 2 r!2(2k)!√	 dx = 
π R	 k!2(r − k)! 

To prove this identity, let us integrate the product of three generating functions. By (i), we have 

√ 
1 

f (x, t)f (x, u)f (x, v)e −x 2 dx = e2(tu+tv+uv). 
π R 

Extracting the coefficient of tr urv2k , we get the result.	 � 

4.6. Proof of Theorem 4.7.	 We need to compute the integral 

Tr(A2m)e −Tr(A2)/2dA. 
hN 

To do this, we note that the integrand is invariant with respect to conjugation by unitary matrices. 
Therefore, the integral can be reduced to an integral over the eigenvalues λ1, . . . , λN of A. 

More precisely, consider the spectrum map σ : hN → RN /SN . It is well known (due to H. Weyl) 
i /2ithat the direct image σ∗dA is given by the formula σ∗dA = Ce− 

P 
λ2 � 

i<j (λi − λj )2dλ, where  C >  0 
is a normalization constant that will not be relevant to us. Thus, we have 

P� � 
λ2m)e− λ2 � 

i /2 

Pm(N ) =  RN ( � i i P 
i /2 

i<j (λi − λj )2dλ 
− λ2 � 

RN e i<j (λi − λj )2dλ 

To calculate the integral Jm in the numerator, we will use Hermite’s polynomials. Observe that since 
Hn(x) are polynomials of degree n with highest coefficient 2n, we  have  i<j (λi − λj ) =  

2−N (N −1)/2 det(Hk (λi )), where k runs through the set 0, 1, . . .  , n  − 1. Thus, we find � P � 
Jm := ( λ2m)e − λ2 

i /2 (λi − λj )2dλ = i 
RN 

i i<j 

2m+N 2/2N λ2m − 
P 

λ2 � 
1 e i (λi − λj )2dλ = 

RN 
i<j (12)	 � P 

2m−N (N −2)/2N λ2m − λ2 

1 e i det(Hk (λj ))2dλ = 
RN 

P � � 
2m−N (N −2)/2N λ2m − λ2 

1 e i ( (−1)σ (−1)τ Hσi(λi)Hτi(λi))dλ. 
RN 

σ,τ ∈SN i 

(Here (−1)σ denotes the sign of σ). 
Since Hermite polynomials are orthogonal, the only terms which are nonzero are the terms with 

σ(i) =  τ (i) for  i = 2, . . .  , N  . That is, the nonzero terms have σ = τ . Thus,  we  have  
P � � 

λ2m − λ2 
Jm = 2m−N (N −2)/2N 1 e i ( Hσi(λi)2dλ = 

RN 
σ∈SN i 

(13) N −1 � ∞ 
−x2m−N (N −2)/2N !γ0 . . .  γN −1 

�	 1 
x 2mHj (x)2 e 

2 
dx,

γj −∞j=0 � ∞where γi = −∞ Hi(x)2e−x 2 dx are the squared norms of the Hermite polynomials. Applying this for 
m = 0 and dividing Jm by J0, we find 

N −1 � ∞ 
−xJm/J0 = 2m 

� 1 
x 2mHj (x)2 e 

2 
dx 

γj −∞j=0 
√

Using Theorem 4.10 (iii) and (v), we find: γi = 2ii! π, and hence 

1 
� N −1 j

Jm/J0 = √ 
� � 2mx2mH2k (x) 

e −x 2 dx 
π R j=0 k=0 

2k k!2(j − k)! 
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Now, using (iv), we get � � 2k j!(2m)! N −1 j

=Jm/J0 = 
2m (m − k)!k!2(j − k)!

j=0 k=0 

(2m)! N −1 j

2k 

� 
m j 

2mm! k k
. 

j=0 k=0 

The sum over k can be represented as a constant term of a polynomial: 
j � �� � 

2k m j 
= C.T .((1 + z)m(1 + 2z −1)k ). 

k k 
k=0 

Therefore, summation over j (using the formula for the sum of the geometric progression) yields 

(2m)! 
C.T .((1 + z)m (1 + 2z−1)N − 1

) =  
(2m)! m

2p m 
� �  

N 
Jm/J0 = 

2mm! 2z−1 2mm! p p + 1  
p=0 

We are done. 


