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34 MATHEMATICAL IDEAS AND NOTIONS OF QUANTUM FIELD THEORY 

6. Matrix integrals and counting planar diagrams 

6.1. The number of planar gluings. Let us return to the setting of §4.  Thus,  we have a potential  
U (x) =  x2/2 − j≥0 gj x

j /j (with gj being formal parameters), and consider the matrix integral 

ZN (�) =  �−N/2 −TrU(A)dA.e 
hN 

Let ẐN (�) =  ZN (�/N ). We have seen that 

ln ẐNlim = W∞, 
N→∞ N 2 

where W∞ is given by summation over planar fat graphs: 

� � � �
b(eΓ)

W∞ = g ni 

i |Aut(�Γ)|n i Γ∈ ee Gc(n)[0] 

In particular, the coefficient of g ni is (up to a power of �) the number of (orientation preserving) i 
gluings of a fat graph of genus zero out of a collection of fat flowers containing ni i-valent flowers for 
each i, divided by inini!. 

On the other hand, one can compute W∞ explicitly as a function of gi by reducing the matrix integral 
to an integral over eigenvalues, and then using a fundamental fact from the theory of random matrices: 
the existence of an asymptotic distribution of eigenvalues as N → ∞. This approach allows one to 
obtain simple closed formulas for the numbers of planar gluings, which are quite nontrivial and for 
which direct combinatorial proofs were discovered only very recently. 

4To illustrate this method, we will restrict ourselves to the case of the potential U (x) =  x2/2 +  gx
(so g4 = −4g and other gi = 0),  and  set  � = 1.  Then  W∞ = n≥1 cn(−g)n/n!, where cn is a number 
of connected planar gluings of a set of n 4-valent flowers. In other words, cn is the number of ways (up 
to isotopy) to connect n “crosses” in the 2-sphere so that all crosses are connected with each other, and 
the connecting lines do not intersect. 

Exercise. Check by drawing pictures that c1 = 2,  c2 = 36. 

Theorem 6.1. (Brezin, Itzykson, Parisi, Zuber, 1978). One has 

cn = (12)n(2n − 1)!/(n + 2)!  

6.2. Proof of Theorem 6.1. Let us present the proof of this theorem (with some omissions). We will 
assume that g is a positive real number, and compute the function W∞(g) explicitly. We follow the 
paper of Brezin, Itzykson, Parisi, and Zuber “Planar diagrams”, Comm. Math. Phys. 59, p. 35-51, 
1978. 

The relevant matrix integral has the form 

−NTr(A2/2+gA4)dA.ẐN = e 
hN 

Passing to eigenvalues, we get 

ẐN = 
JN (g) 
JN (0) 

, 

where � P P � 
i /2+g λ4 

JN (g) =  e −N( λ2 
i ) (λi − λj )2dλ. 

RN 
i<j 

Thus, W∞(g) =  E(g) − E(0), where E(g) = limN→∞ N −2 ln JN (g). 

Proposition 6.2. (steepest descent principle) E(g) equals the maximal value of the logarithm of the 
integrand. 

The proposition says, essentially, that the integrand has a sufficiently sharp maximum, so that the 
leading behavior of the integral can be computed by the steepest descent formula. We note that we 
cannot apply the steepest descent formula without explanations, since the integral is over a space whose 
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dimension grows as the perturbation parameter 1/N goes to 0. In other words, it is necessary to do 
some estimates which we will omit. We will just mention that for g = 0, this result can be derived from 
the explicit evaluation of the integral using Hermite polynomials (see §4). For the general case, we refer 
the reader to the book of P. Deift “Orthogonal polynomials and random matrices: a Riemann-Hilbert 
approach”. P 

i /2+g i )The integrand K(λ1, . . . , λN ) =  e−N ( λ2 P 
λ4 � 

i<j (λi − λj )2 has a unique maximum, because 
it is logarithmically concave (check it!). The maximum of the integrand is found by equating the partial 
derivatives to zero. This yields � 1 1 

λi + 2gλ3 
i ).(16) = N(

λi − λj 2 
j �=i 

Let λ1 < λ2 < · · · < λN be the unique (up to permutations) solution of this system of equations. 

1Proposition 6.3. The normalized counting measures N δ(x − λi) converge weakly to a measure 
µ(x) =  f(x, g)dx, where  f(x, g) is a continuous function, supported on a finite interval [−2a, 2a], and  
differentiable on this interval. 

For the proof we again refer the reader to the book of P. Deift (p. 132 and later). √We note that for √ 
1 1 g = 0, by Wigner’s semicircular law, a = 1  and  f(x, 0) = 2π 4 − x2; so  f(x, g) =  2π 4 − x2 + O(g). 

Now our job will be to find the function f(x, g). Passing to the limit in equation 16 (which requires 
justification that we will omit), we get � 2a 1 1 3f(x, g)dx =

2 
y + 2gy , |y| ≤ 2a 

−2a y − x 

where the integral is understood in the sense of principal value. 
This is a linear integral equation on f(x, g), which can be solved in a standard way. Namely, one � 2a 1considers the analytic function F (y) =  −2a y−x f(x, g)dx for y in the complex plane but outside of the 

interval [−2a, 2a]. For y ∈ [−2a, 2a], let F+(y), F−(y) denote the limits of F (y) from  above  and  below.  
Then by the Plemelj formula, the integral equation implies 

1 1 3 

2
(F+(y) +  F−(y)) = 

2 
y + 2gy . 

3On the other hand, F+(y) =  F−(y). Hence, ReF+(y) =  Re(F−(y)) = 1 
2 y + 2gy . 

Now set y = a(z + z−1). Then, as y runs through the exterior of [−2a, 2a], z runs through the 
exterior of the unit circle. So the function G(z) :=  F (y) is analytic on the outside of the unit circle, 
with decay at infinity, and ReG(z) =  1 a(z + z−1) +  2ga3(z + z−1)3 , |z| = 1. This implies that G(z) is  2 
twice the sum of all negative degree terms of this Laurent polynomial. In other words, we have 

3 −1G(z) =  4ga z −3 + (a + 12ga 3)z . 

This yields 
1 1 

F (y) =  
2 
y + 2gy 3 − ( + 4ga 2 + 2gy 2) y2 − 4a2 .

2 
Now f(y, g) is found as the jump of F : 

1 1 
f(y, g) =  ( + 4ga 2 + 2gy 2) 4a2 − y2 . 

π 2 

It remains to find a in terms of g. We  have  yF (y) → 1, y → ∞  (as f(x, g)dx = 1), hence 
3zG(z) → 1/a, z → ∞. This yields 1/a = a + 12ga , or  

12ga 4 + a 2 − 1 =  0. 

This allows one to determine a uniquely: 

(1 + 48g)1/2 − 1
)1/2 a = 

24g
. 
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Now let us calculate E(g). It follows from the above that � 2a � 2a � 2a 1 
E(g) =  ln |x − y|f (x, g)f (y, g)dxdy − ( x 2 + gx 4)f (x, g)dx.

2−2a −2a −2a 

On the other hand, let us integrate the integral equation defining f (x, g) with respect to y (from 0 to 
u). Then we get � 2a 

2 (ln |x − u| − ln |x|)f (x, g)dx =
1 4 u 2 + gu .
2−2a 

Substituting this into the expression for E(g), we get � 2a 1 1 
E(g) =  (ln |u| −  u 2 − 

2 
gu 4)f (u, g)du

4 

Since f (u, g) is known, this integral can be computed. In fact, can be expressed via elementary functions, 
and after calculations we get 

1 

−2a 

2 − 1)(9 − a 2).E(g) − E(0) = ln a − 
24

(a 

Substituting here the expression for a, after a calculation one finally gets: 
∞

E(g) − E(0) = 
� 

(−12g)k (2k − 1)! 
. 

k!(k − 2)! 
k=1 

This implies the required formula for cn. 


