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7. Quantum mechanics 

So far we have considered quantum field theory with 0-dimensional spacetime (to make a joke, one 
may say that the dimension of the space is −1). In this section, we will move closer to actual physics: 
we will consider 1-dimensional spacetime, i.e. the dimension of the space is 0. This does not mean that 
we will study motion in a 0-dimensional space (which would be really a pity) but just means that we 
will consider only point-like quantum objects (particles) and not extended quantum objects (fields). In 
other words, we will be in the realm of quantum mechanics. 

7.1. The path integral in quantum mechanics. Let U(q) be a smooth function on the real line 
(the potential). We will assume that U(0) = 0, U ′(0) = 0, and U ′′(0) = m2, where  m >  0. 

Remark. In quantum field theory the parameter m in the potential is called the mass parameter. 
To be more precise, in classical mechanics it has the meaning of frequency ω of oscillations. However, in 
quantum theory thanks to Einstein frequency is identified with energy (E = �ω/2π), while in relativistic 
theory energy is identified with mass (again thanks to Einstein, E = mc2). 

We want to construct the theory of a quantum particle moving in the potential field U(q). According 
to what we discussed before, this means that we want to give sense to and to evaluate the normalized 
correlation functions � 

iS(q)/�Dqq(t1) . . . q(tn)e
< q(t1) . . . q(tn) >:= � 

eiS(q)/�Dq 
, 

where S(q) =  L(q)dt, and  L(q) =  ̇q2/2 − U(q). 
As we discussed, such integrals cannot be handled rigorously by means of measure theory if � is a 

positive number; so we will only define these path integrals “in perturbation theory”, i.e. as formal 
series in �. 

Before giving this (fully rigorous) definition, we will explain the motivation behind it. We warn the 
reader that this explanation is heuristic and involves steps which are mathematically non-rigorous (or 
“formal” in the language of physicists). 

7.2. Wick rotation. In §1 we discussed path integrals with imaginary exponential (quantum mechan-
ics), as well as real exponential (Brownian motion). If � is a number, then the integrals with imaginary 
exponential cannot be defined measure theoretically. Therefore, people study integrals with real expo-
nential (which can be rigorously defined), and then perform a special analytic continuation procedure 
called the Wick rotation. 

In our formal setting (� is a formal parameter), one can actually define the integrals in both the 
real and the imaginary case. Still, the real case is a bit easier, and thus the Wick rotation is still 
useful. Besides, the Wick rotation is very important conceptually. Therefore, while it is not technically 
necessary, we start with introducing the Wick rotation here. 

Namely, let us denote < q(t1) · · · q(tn) > by GM (t1, . . . , tn), and “formally” make a change of variable n 
τ = it in the formula for GM (t1, . . . , tn). Let q(t) =  q∗(τ). Then, taking into account that dτ = idt,n 
dq/dt = idq∗/dτ we get � 

2 ( dq∗ )2+U (q∗ )]/�Dqq∗(τ1) . . . q∗(τn)e− 
R
[ 1 ∗dτ GM (t1, . . . , tn) =  � 

2 ( dq∗n 
e− 

R
[ 1 dτ )

2+U (q∗ )]/�Dq
. 

∗ 

This shows that 
GM (t1, . . . , tn) =  GE 

n (it1, . . . , itn),n 

where � 
q(t1) . . . q(tn)e−SE (q)/�DqGE 

n (t1, . . . , tn) :=  � . 
e−SE (q)/�Dq 

where SE (q) =  LE (q)dt, and  LE (q) =  ̇q2/2 +  U(q) (i.e. LE is obtained from L by replacing U with 
−U). 

This manipulation certainly does not make rigorous sense, but it motivates the following definition. 

Definition 7.1. The function GM (t1, . . . , tn) (ti ∈ R) is the analytic continuation of the function n 
GE 

n (s1, . . . , sn) from the  point (t1, . . . , tn) to the  point (it1, . . . , itn) along  the path  eiθ (t1, . . . , tn), 0 ≤ 
θ ≤ π/2. 
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Of course, this definition will only make sense if we define the function GE 
n (t1, . . . , tn) and  show  that  

it admits the required analytic continuation. This will be done below. 
Terminological remark. The function GM (t1, . . . , tn) is called the Minkowskian (time ordered) n 

correlation function, while GE 
n (t1, . . . , tn) is called the Euclidean correlation function (hence the nota-

tion). This terminology will be explained later, when we consider relativistic field theory. 
From now on, we will mostly deal with Euclidean correlation functions, and therefore will omit the 

superscript E when there is no danger of confusion. 

7.3. Definition of Euclidean correlation functions. Now our job is to define the Euclidean corre-
lation functions Gn(t1, . . . , tn). Our strategy (which will also be used in field theory) will be as follows. 
Recall that if our integrals were finite dimensional then by Feynman’s theorem the expansion of the 
correlation functions in � would be given by a sum of amplitudes of Feynman diagrams. So, in the 
infinite dimensional case, we will use the sum over Feynman diagrams as a definition of correlation 
functions. 

More specifically, because of conditions on U we have an action functional without constant and 
linear terms in q, so that the correlation function Gn(t1, . . . , tn) should be given by the sum � �

b(Γ) 

(17) Gn(t1, . . . , tn) =  FΓ(�1, . . . , �n),|Aut(Γ)|∗Γ∈G≥3(n) 

Thus, we should make sense of (=define) the amplitudes FΓ in our situation. For this purpose, we need 
to define the following objects. 

1. The space V . 
∗2. The form B on V which defines B−1 on V . 

3. The tensors corresponding to non-quadratic terms in the action. 
4. The covectors �i. 
It is clear how to define these objects naturally. Namely, V should be a space of functions on R with 

some decay conditions. There are many choices for V , which do not affect the final result; for instance, 
a good choice (which we will make) is the space C∞(R) of compactly supported smooth functions on 0 ∗ 
R, Thus  �V is the space of generalized functions on R. Note  that  V is equipped with the inner product 
(f, g) =  

R f(x)g(x)dx. 
The form B, by analogy with the finite dimensional case, should be twice the quadratic part of the 

2action. In other words, B(q, q) =  (q̇2 + m2q2)dt = (Aq, q), where A is the operator −d2/dt2 + m . 
This means that B−1(f, f) =  (A−1f, f) 

The operator A−1 is an integral operator, with kernel K(x, y) =  G(x − y), where G(x) is  the  
Green’s function of A, i.e. the fundamental (decaying at infinity) solution of the differential equation 
(AG)(x) =  δ(x). It is straightforward to find that 

−m|x|G(x) =  e /2m. 
∗ ∗(thus B−1 is actually defined not on the whole V but on a dense subspace of V ). 

Remark. Here we see the usefulness of the Wick rotation. Namely, the spectrum of A in L2 is 
[m2 , +∞), so it is invertible and the inverse is bounded. However, if we did not make a Wick rotation, 
we would deal with the operator A′ = −d2/dt2 − m2, whose spectrum is [−m2 , +∞), i.e. contains 0, so 
that the operator is not invertible in the naive sense. 

To make sense of the cubic and higher terms in the action as tensors, consider the decomposition of 
U in the (asymptotic) Taylor series at x = 0:  U(x) =  m2x2/2 +  n≥3 anxn/n!. This shows that cubic 
and higher terms in the action have the form 

Br (q, q, . . . , q) =  q r (t)dt 

Thus Br (q1, . . . , qr ) is  an element  of  (SrV )∗ given by the generalized function δt1=···=tr (the delta 
function of the diagonal). 

Finally, the functionals �i are given by �i(q) =  q(ti), so �i = δ(t − ti). 
This leads to the following Feynman rules of defining the amplitude of a diagram Γ. 
1. To the i-th external vertex of Γ assign the number ti. 
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2. To each internal vertex j of Γ, assign a variable sj . 
3. For each internal edge connecting vertices j and j′, write  G(sj − sj′ ). 
4. For each external edge connecting i and j write G(ti − sj ). 
5. For each external edge connecting i and i′ write G(ti − ti′ ). 
6. Let GΓ(t, s) be the product of all these functions. 
7. Let FΓ(�1, . . . �n) =  j (−av(j)) GΓ(t, s)ds, where  v(j) is the valency of j.

We are finally able to give the following definition.


Definition 7.2. The function Gn(t1, . . . , tn) is defined by the formula 17. 

Remark. Note that the integrals defining FΓ are convergent since the integrand always decays 
exponentially at infinity. It is, however, crucial that we consider only graphs without components 
having no external vertices; for example, if Γ has a single 4-valent vertex connected to itself by two 
loops (Fig. 23) then the amplitude integral involves 

R G(0)2ds, which is obviously divergent. 

Figure 23 

With this definition, the function Gn(t1, . . . , tn) is a Laurent series in �, whose coefficients are sym-
metric functions of t1, . . . , tn, given by linear combinations of explicit (and convergent) finite dimensional 
integrals. Furthermore, it is easy to see that these integrals are in fact computable in elementary func-
tions, i.e. are (in the region t1 ≥  · · ·  ≥  tn) linear combinations of products of functions of the form 
ti e

atir . This implies the existence of the analytic continuation required in the Wick rotation procedure. 
Remark. An alternative setting for making this definition is to assume that ai are formal parameters. 

In this case, � can be given a numerical value, e.g. � = 1, and the function Gn will be a well defined 
power series in a3, a4, . . .. 

Example 1. The free theory:  U(q) =  m2q2/2. In this case, there is no internal vertices, and hence 
we have 

Proposition 7.3. (Wick’s theorem) One has Gn(t1, . . . , tn) =  0  if n is odd, and 

G2k (t1, . . . , t2k ) =  �k G(ti − tσ(i)). 
σ∈Πk i∈{1,...,2k}/σ 

In particular, G2(t1, t2) =  �G(t1 − t2). In other words, G2(t1, t2) is (proportional to) the Green’s 
function. Motivated by this, physicists often refer to correlation functions of a quantum field theory as 
Green’s functions. 

t1 t2 

Figure 24 

Example 2. Consider the potential U(q) =  m2q2/2 +  gq4/24, and set � = 1.  In  this  case,  let  us  
calculate the 2-point correlation function modulo g2 . In other words, we have to compute the coefficient 
of g in this function. Thus we have to consider Feynman diagrams with two external edges and one 
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internal vertex. Such a diagram Γ is unique: it consists of one edge with a loop attached in the middle 
(Fig. 24). This diagram has automorphism group Z/2. The amplitude of this diagram is 

−m(|s−t1|+|s−t2|FΓ = −g G(s, t1)G(s, t2)G(s, s)ds = 
g

e )ds 
R 8m3 

R 

Because of symmetry in t1 and t2, we may assume that t1 ≥ t2. Splitting the integral in a sum of three 
integrals, over (−∞, t2], [t2, t1], and [t1,∞), respectively we get: 

G2(t1, t2) =  �G(t1 − t2), 

where 
g 1 

G(t) =� 1 
e −m|t|(1 − 

8m2 
( + |t|)) + O(g 2).

2m m 
This expression is called the 1-loop approximation to the 2-point function, because it comes from 0-loop 
and 1-loop Feynman diagrams. 

Remark. Here we are considering quantum mechanics of a single 1-dimensional particle. However, 
everything generalizes without difficulty to the case of an n-dimensional particle or system of particles 
(i.e. to path integrals over the space of vector valued, rather than scalar, functions of one variable). 
Indeed, if q takes values in a Euclidean space V then the quadratic part of the Lagrangian is of the form 
1
2 (q̇

2 − M(q)), where M is a positive definite quadratic form on V . Reducing M to principal axes, we 
1may assume that the quadratic part of the Lagrangian looks like 2 2 

i(q̇i 
2 − mi qi ), which corresponds 2 

to a system of independent harmonic oscillators. Thus in quantum theory the propagator will be the 
−mi |t−s|diagonal matrix with diagonal entries e /2mi, and the correlation functions can be defined by 

the usual Feynman diagram procedure. 

7.4. Connected Green’s functions. Let Gc 
n(t1, . . . , tn) be the connected Green’s functions, defined 

by the sum of the same amplitudes as Gn(t1, . . . , tn) but taken over connected Feynman diagrams only. 
It is clear that 

Gn(t1, . . . , tn) =  G|
c
Si |(tj ; j ∈ Si). 

{1,...,n}=S1�...�Sk 

2 (t1, t2) +  Gc 
1 (t2), etc. Thus, to know the correlation functions, it is 

sufficient to know the connected correlation functions. 
Example 1. In a free theory (U = m2q2/2), all connected Green’s functions except G2 vanish. 

For example, G2(t1, t2) =  Gc 
1 (t1)Gc 

t2 

t1 t3 

t4 

Figure 25 

Example 2. Let us compute the connected 4-point function in the theory associated to quartic 
2potential U as above, modulo g . This means, we should compute the contribution of connected 

Feynman diagrams with one internal vertex and 4 external edges. Such diagram Γ is unique –it is the 
cross (with one internal vertex), Fig. 25. This diagram no nontrivial automorphisms. Thus, 

Gc 
4 (t1, t2, t3, t4) =  −g G(t1 − s)G(t2 − s)G(t3 − s)G(t4 − s)ds + O(g 2). 

R 

It is elementary to compute this integral; we leave it as an exercise. 
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7.5. The clustering property. Note that the Green’s function G(t) goes to zero at infinity. This 
implies the following clustering property of the correlation functions of the free theory: 

lim Gn(t1, . . . , tr , tr+1 + z, . . . , tn + z) =  Gr (t1, . . . , tr)Gn−r (tr+1 . . . tn). 
z→∞ 

Moreover, it is easy to show that the same is true in the interacting theory (i.e. with potential) in each 
degree with respect to � (check it!). The clustering property can be more simply expressed by the 
equation 

Gclim n(t1, . . . , tr , tr+1 + z, . . . , tn + z) = 0. 
z→∞ 

This property has a physical interpretation: processes distant from each other are almost statistically 
independent. Thus it can be viewed as a necessary condition of a quantum field theory to be “physically 
meaningful”. 

Remark. Nevertheless, there exist theories (e.g. so called topological quantum field theories) which 
do not satisfy the clustering property but are interesting both form a physical and mathematical point 
of view. 

7.6. The partition function. Let J(t)dt be a compactly supported measure on the real line. Consider 
the “partition function with external current J”, which is the formal expression 

−SE (q)+(J,q) 

Z(J) =  e Dq. 

Then we have a formal equality � �−nZ(J)
= 

n! Rn 

Gn(t1, . . . , tn)J(t1) · · · J(tn)dt1 · · · dtn,
Z(0) 

n 

which, as before, we will use as definition of Z(J)/Z(0). So the knowledge of Z(J)/Z(0) is equivalent 
to the knowledge of all the Green’s functions (in other words, Z(J)/Z(0) is their generating function). 
Furthermore, as in the finite dimensional case, we have 

Proposition 7.4. One has � �−n 

GcW (J) :=  ln  
Z(J)

= n(t1, . . . , tn)J(t1) · · ·J(tn)dt1 · · · dtn
Z(0) n! 

n 

(i.e. W is the generating function of connected Green’s functions) 

The proof of this proposition is the same as in the finite dimensional case. 
Remark. The statement of the proposition is equivalent to the relation between usual and connected 

Green’s functions, given in the previous subsection. 
Remark. The fact that we can only define amplitudes of graphs whose all components have at least 

one 1-valent vertex (see above) means that we actually cannot define either Z(0) or Z(J) but can only 
define their ratio Z(J)/Z(0). 

Like in the finite dimensional case, we have an expansion 

W (J) =  �−1W0(J) +  W1(J) +  �W2(J) +  · · ·  , 

where Wj are the j-loop contributions (in particular, W0 is given by a sum over trees). Furthermore, 
we have explicit formulas for W0 and W1, analogously to the finite dimensional case. 

Proposition 7.5. One has 
W0(J) =  −SE (qJ ) + (qJ , J), 

where qJ is the extremal of the functional SJ 
E (q) :=  SE (q)−(q, J) which decays at infinity. Furthermore, 

1 
W1(J) =  − ln det LJ ,2 

where LJ is the linear operator on V such that d2SJ
E (0)(LJ f1, f2).E (qJ )(f1, f2) =  d2S0 



� 

� 

� 

� 

42 MATHEMATICAL IDEAS AND NOTIONS OF QUANTUM FIELD THEORY 

The proof of this proposition, in particular, involves showing that qJ is well defined and that det LJ 

exists. It is analogous to the proof of the same result in the finite dimensional case which is given in 
§3.7 (to be precise, we gave a proof only in the 0-loop case; but in the 1-loop case, the proof is similar). 
Therefore we will not give this proof; rather, we will illustrate the statement by an example. 

E(q) =  (q̇2/2+U(q))dt− 
aq(0). The Euler-Lagrange equation has the form 

Example. Let U be the quartic potential and J(t) =  aδ(t). In this case, SJ 

2 3q̈ = m q + gq /6 − aδ(t). 

Thus, the function qJ is continuously glued from two solutions q+, q− of the nonlinear differential 
equation q̈ = m2q + gq3/6 on  (−∞, 0] and [0, ∞), with jump of derivative at 0 equal to −a. 

The solutions q+, q− are required to decay at infinity, so they must be solutions of zero energy 
2(E = ˙q± /2 − U(q±) = 0). Thus, by the standard formula for solutions of Newton’s equation, they are 

defined by the equality 

� � gq1 +  
2 

dq dq
t − t± = � = � = 

1
ln � 

12m2 − 1 
. 

2(E + U(q)) mq 1 +  gq2 2m 1 +  gq2

2 + 112m2 12m

After a calculation one gets � 
12m2 

qJ (t) =  
C−1em|t| −

g 

Ce−m|t| , 

where C is the solution of the equation 

C + C−1 g a 
= 

(C − C−1)2 12m2 2m 

which is given by a power series in a with zero constant term. ¿From this it is elementary (but somewhat 
lengthy) to compute W0 = −SJ 

E(qJ). 
2Now, the operator LJ is given by the formula LJ = 1  +  gA−1qJ(t)2/2, where A = −d2/dt2 + m . 

eThus det LJ makes sense. Indeed, the operator A−1qJ (t)2 is given by the kernel 
−m|x−y| qJ (y)2 , which  2m 

decays exponentially at infinity; hence this operator is trace class and therefore, 1 + gA−1qJ(t)2/2 is  
determinant class. 

7.7. 1-particle irreducible Green’s functions. Let G1PI(t1, . . . , tn) denote 1-particle irreducible n 
Green’s functions, i.e. those defined by the sum of the same amplitudes as the usual Green’s functions, 
but taken only over 1-particle irreducible Feynman graphs. Define also the amputated 1-particle irre-
ducible Green’s function: G1PIa  = A⊗nG1PI  (it is defined by the same sum of amplitudes, except that n n 
instead of G(ti − sj) for external edges, we write δ(ti − sj)). 

Let Seff (q) be the generating function of G1PIa  i.e.,n � �−n 

G1PIa  Seff (q) =  
n! n (t1, . . . , tn)q(t1) · · · q(tn)dt1 · · · dtn, 

n 

Proposition 7.6. The function W (J) = ln(Z(J)/Z(0)) is the Legendre transform of Seff (q), i.e. it 
equals −Seff (q̃J ) + (J, q̃J), where  q̃J is the extremal of −Seff (q) + (J, q) (decaying at infinity). 

The proof of this proposition is the same as in the finite dimensional case. The proposition shows that 
in order to know the Green’s functions, it “suffices” to know amputated 1-particle irreducible Green’s 
functions (the generating function of usual Green’s functions can be reconstructed from that for 1PI 
Green’s functions by taking the Legendre transform and exponentiation). Which is a good news, since 
there are a lot fewer 1PI diagrams than general connected diagrams. 

7.8. Momentum space integration. We saw that the amplitude of a Feynman diagram is given by 
an integral over the space of dimension equal to the number of internal vertices. This is sometimes 
inconvenient, since even for tree diagrams such integrals can be rather complicated. However, it turns 
out that if one passes to Fourier transforms then Feynman integrals simplify and in particular the 
number of integrations for a connected diagram becomes equal to the number of loops (so for tree 
diagrams we have no integrations at all). 
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Namely, we will proceed as follows. Instead of the time variable t we will consider the dual energy 
variable E. A function q(t) with compact support will be replaced by its Fourier transform q̂(E). Then, 
by Plancherel formula, for real functions q1, q2, we  have  

(q1, q2) =  q̂1(E)q̂2(E)dE = q̂1(E)q̂2(−E)dE. 
R R 

This implies that the propagator is given by 

1 ˆB−1(f, f) =  
E2 + m2 

f(E)f̂ (−E)dE 
R 

The vertex tensors standing at k-valent vertices were δs1=···=sk , so they will be replaced by δQ1+···+Qk =0, 
where Qi are dual variables to si. 

Terminological remark. Physicists refer to the time variables ti, sj as position variables, and to 
energy variables Ei, Qk as momentum variables, since in relativistic mechanics (which is the setting 
we will deal with when we study field theory) there is no distinction between time and position and 
between energy and momentum (due to the action of the Lorenz group). 

This shows that the Feynman rules “in momentum space” for a given connected Feynman diagram 
Γ with  n external vertices are as follows. 

1. Orient the diagram Γ, so that all external edges are oriented inwards. 
2. Assign variables Ei to external edges, and variables Qj to internal ones. These variables are 

subject to the linear equations of “the first Kirchhof law”: at every internal vertex, the sum of the 
variables corresponding to the incoming edges equals the sum of those corresponding to the outgoing 
edges. Let Y (E) be the space of solutions Q of these equations (it depends on Γ, but we will not write 
the dependence explicitly). It is easy to show that this space is nonempty only if Ei = 0,  and  in  that  
case dim Y (E) equals the number of loops of Γ (show this!). 

1 13. For each external edge, write 
E2+m2 , and for each internal edge, write 

Q2+m2 . Let  φΓ(E,Q) be  
i k 

the product of all these functions. 
4. Define the momentum space amplitude of Γ to be the distribution F̂Γ(E) on the hyperplane 
Ei = 0 defined by the formula 

F̂Γ(E1, . . . , En) =  (−av(j)) φΓ(E,Q)dQ. 
j Y (E) 

We will regard it as a distribution on the space of all n-tuples E1, . . . , En, extending it by zero. It is 
clear that this distribution is independent on the orientation of Γ. � 

Remark. Here we must specify the normalization of the Lebesgue measure on the space Ei = 0  
and the space Y (E). The first one is just dE1 · · · dEn−1. To define the second one, let YZ(0) be the set 
of integer elements in Y (0). Then the measure on Y (E) is defined in such a way that the volume of 
Y (E)/YZ(0) is 1. 

Now we have 

Proposition 7.7. The Fourier transform of the function FΓ(δt1 , . . . , δtn ) is F̂Γ(E1, . . . , En). Hence,  
the Fourier transform of the connected Green’s functions is 

Gc(18) n̂(E1, . . . , En) =  
� �

b(Γ) 

F̂Γ(E1, . . . , En). |Aut(Γ)|∗Γ∈G≥3(n) 

The proof of the proposition is straightforward. 
To illustrate the proposition, consider an example. 
Example 1. The connected 4-point function for the quartic potential, modulo g2, in  momentum  

space, looks like: 
4� 1 � 

Gc
n̂(E1, E2, E3, E4) =  −g

E2 + m2 
δ( Ei) +  O(g 2). 

i=1 i 

Example 2. Let us compute the 1PI 4-point function in the same problem, modulo g3. Thus,  
in addition to the above, we need to compute the g2 coefficient, which comes from 1-loop diagrams. 
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1

5 6 
E1 

Q 

E1 + E2 − Q 
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� 

	

I

-

-

3 

E3 

Γ. 

E2 E42 4 

Figure 26 

There are three such diagrams, differing by permutation of external edges. One of these diagrams is as 
follows: it has external vertices 1, 2, 3, 4 and internal ones 5, 6 such that 1, 2 are connected to 5, 3, 4 to  
6, and 5 and 6 are connected by two edges (Fig. 26). This diagram has the symmetry group Z/2, so its 
contribution is � 4

g2 dQ � 1 � 
δ( Ei).2

( 
(Q2 + m2)((E1 + E2 − Q)2 + m2)

) 
E2 + m2 

R i=1 i 

The integral inside is easy to compute for example by residues. This yields 

Gc
n̂(E1, E2, E3, E4) =  

� 1 
4 �1 −g 

4

E2 + m2 
(1 − 

πg � 
Ei) +  O(g 3). 

m (E1 + Ei)2 + 4m2 
)δ( 

i=1 i i=2 

7.9. The Wick rotation in momentum space. To obtain the correlation functions of quantum 
mechanics, we should, after computing them in the Euclidean setting, Wick rotate them back to the 
Minkowski setting. Let us do it at the level of Feynman integrals in momentum space. (We could do 
it in position space as well, but it is instructive for the future to do it in momentum space, since in 
higher dimensional field theory which we will discuss later, the momentum space representation is more 
convenient). 

Consider the Euclidean propagator 

1
= G(t)e iEtdt,

E2 + m2 

where G is the Green’s function. When we do analytic continuation back to the Minkowski setting, we 
must replace in the correlation functions the time variable t with eiθ t, where  θ varies from 0 and π/2. 
In particular, the Green’s function G(t) must be replaced by G(eiθ t). So we must consider 

−iθ 

G(e iθ t)e iEtdt = e −iθ G(t)e ie
−iθ Etdt = 

e−2iθ 

e

E2 + m2 
. 

As θ → π/2, this function tends (as a distribution) to the function limε→0+ 
i . For brevity the E2−m2+iε 

ilimit sign is usually dropped and this distribution is written as E2−m2+iε . 
We see that in order to compute the correlation functions in momentum space in the Minkowski 

setting, we should use the same Feynman rules as in the Euclidean setting except that the propagator 
put on the edges should be 

i 
. 

E2 − m2 + iε 

For instance, the contribution of the diagram in Fig. 26 is 

� 42 

− 
g

2
( 

dQ � 1 � 
δ( Ej ).(Q2 − m2 + iε)((E1 + E2 − Q)2 − m2 + iε)

) 
E2 − m2 + iεR j=1 j 
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7.10. Quantum mechanics on the circle. It is reasonable (at least mathematically) to consider 
Euclidean quantum mechanical path integrals in the case when the time axis has been replaced with a 
circle of length L, i.e. t ∈ R/LZ. In this case, the theory is the same, except the Green’s function G(t) 
is replaced by the periodic solution GL(t) of the equation (−d2/dt2 + m2)f = δ(t) on the circle. This 
solution has the form � e−m(t−L/2) + e−m(L/2−t) 

GL(t) =  G(t − kL) =  
2m(emL/2 − e−mL/2) 

, 0 ≤ t ≤ L. 
k∈Z 

We note that in the case of a circle, there is no problem with graphs without external edges (as 
integral over the circle of a constant function is convergent), and hence one may define not only correla-
tion functions (i.e. Z(J )/Z(0)), but also Z(0) itself. Namely, let U (q) =  m2q2/2 +  n≥3 anqn/n!, 

2and let m2 = m0 + a2 (where ai are formal parameters). Then we can make sense of the ratio 
Zm0,a,L(0)/Zm0,0,L(0) (where Zm,a,L(0) denotes the partition function for the specified values of pa-
rameters; from now on the argument 0 will be dropped). Indeed, this ratio is defined by the formula 

�
b(Γ)Zm0,a,L = 

� 
FΓ,

Zm0,0,L |Aut(Γ)|
Γ∈G≥2(0) 

which is a well defined expression. 
It is instructive to compute this expression in the case a2 = a, a3 = a4 = · · ·  = 0.  In  this  case,  

we have only 2-valent vertices, so the only connected Feynman diagrams are N -gons, which are 1-loop. 
Hence, 

ln 
Zm0,a,L 1 

= W1 = − ln det M,
Zm0,0,L 2 

2where M = 1  +  a(−d2/dt2 + m0)−1 . This determinant may be computed by looking at the eigenvalues. 
Namely, the eigenfunctions of −d2/dt2 + m2 in the space C∞(R/LZ) are  e2πint/L , with eigenvalues 0 

2 2 24π n + m0. So,  L2 � a
det M = (1 + 

4π2n2 2 
). 

L2 + m0n∈Z 

Hence, using the Euler product formula for sinh(z), we get 

Zm0,a,L = 
sinh(m0L/2) 

Zm0,0,L sinh(mL/2) 

Remark. More informally speaking, we see that the partition function Z for the theory with 
CU = m2q2/2 has the form sinh(mL/2) , where  C is a constant of our choice. Our choice from now on will 

be C = 1/2; we will see later why such a choice is convenient. 

7.11. The massless case. Consider now the massless case, m = 0. In this case the propagator 
should be obtained by inverting the operator − d

2 

dt2 , i.e. it should be a the integral operator with kernel 
G(t − s), where G(t) is an even function satisfying the differential equation −G′′(t) =  δ(t). There is a 
1-parameter family of such solutions, G(t) =  − 1 |t| + C. Using them (for any choice of C), one may 2 
define the correlation functions of the theory by the Wick formula. 

Note that the function G does not decay at infinity. Therefore, this theory will not satisfy the 
clustering property (i.e. is not “physically meaningful”). 

We will also have difficulties in defining the corresponding interacting theory (i.e. one with a non-
quadratic potential), as the integrals defining the amplitudes of Feynman diagrams will diverge. Such 
divergences are called infrared divergences, since they are caused by the failure of the integrand to decay 
at large times (or, in momentum space, its failure to be regular at low frequencies). 

7.12. Circle valued quantum mechanics. Consider now the theory with the same Lagrangian in 
which q(t) takes values in the circle of radius r, R/2πrZ (the “sigma-model”). We can do this at least 
classically, since the Lagrangian q̇2/2 makes sense in this case. 

Let us define the corresponding quantum theory. The main difference from the line-valued case is that 
since q(t) is circle valued, we should consider not the usual correlators < q(t1) · · · q(tn) >, but rather 
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correlation functions exponentials < eip1q(t1)/r · · · eipn q(tk )/r >, where  pi are integers. They should be 
defined by the path integral 

−S(q)/�Dq, (19) eip1q(t1)/r · · · eipn q(tn )/re 

1S(q) =  2 q̇2dt where e−S(q)/�Dq is agreed to be 1. Note that we should only consider the case 
pi = 0, otherwise the group of translations along the circle acts nontrivially on the integrand, and 

hence under any reasonable definition the integral should be zero. 
Now let us define the integral (19). Since the integral is invariant under shifts along the target circle, 

we may as well imagine that we are integrating over q : R → R with q(0) = 0. Now, let us use the finite 
dimensional analogy. Following this analogy, by completing the square we would get 

− � 
2 B

−1(
P

pj q(tj ),
P

pj q(tj )) −� 
P

pl pj G(tl −tj )/2r 2 |tl −tj |/2r 2 
2re = e = e � 

P
l<j pl pj 

where B(q, q) =  q̇2dt. Thus, it is natural to define the correlators by the formula 

|tl −tj |/2r 2 < eip1q(t1)/r · · · eipn q(tk )/r >= e � 
P

l<j pl pj . 

We note that this theory, unlike the line-valued one, does satisfy the clustering property. Indeed, if 
pj = 0 (as we assumed), then (assuming t1 ≥ t2 ≥  · · ·  ≥  tn), we have 

n−1

plpj (tl − tj ) =  (tj − tj+1)(pj+1 + · · · + pn)(p1 + · · · + pj ) =  − (tj − tj+1)(p1 + · · · + pj )2 , 
l<j j=1 j 

so the clustering property follows from the fact that (p1 + · · · + pj )2 ≥ 0. 

7.13. Massless quantum mechanics on the circle. Consider now the theory with Lagrangian q̇2/2, 
where q is a function on the circle of length L. In this case, according to the Feynman yoga, we must 
invert the operator −d2/dt2 on the circle R/LZ, or equivalently solve the differential equation −G′′(t) =  
δ(t). Here we run into trouble: the operator −d2/dt2 is not invertible, since it has eigenfunction 1 with 
eigenvalue 0; correspondingly, the differential equation in question has no solutions, as G′′dt must be 
zero, so −G′′(t) cannot equal δ(t) (one may say that the quadratic form in the exponential is degenerate, 
and therefore the Gaussian integral turns out to be meaningless). This problem can be resolved by the 
following technique of “killing the zero mode”. Namely, let us invert the operator −d2/dt2 on the 
space {q ∈ C∞(R/LZ) :  qdt = 0} (this may be interpreted as integration over this codimension one 
subspace, on which the quadratic form is nondegenerate). This means that we must find the solution 
of the differential equation −G′′(t) =  δ(t) − 1 , such that Gdt = 0. Such solution is indeed unique, L 

and it equals G(t) =  (t−L/2)2 − L 
24 , t ∈ [0, L]. Thus, for example < q(0)2 >= L/12.2L 

Higher correlation functions are defined in the usual way. Moreover, one can define the theory with 
an arbitrary potential using the standard procedure with Feynman diagrams. 

Finally, let us consider the circle valued version of the same theory. Thus, our integration variable is 
a map  q : R/LZ → R/2πrZ. Let us first consider integration over degree zero maps. Then we should 
argue in the same way as in the case t ∈ R, and make the definition 

< eip1q(t1)/r · · · eipn q(tn )/r >0 = e −� 
P

l,j pl pj G(tl −tj )/2r 2 , 

where pj = 0. (Here subscript 0 stands for degree zero maps). Assuming that 1 ≥ t1, · · ·  , tn ≥ 0, we 
find after a short calculation 

ipn q(tn )/r >0 
� 
2 (

P
l<j pl pj |tl −tj |+(

P
pj tj )

2/L)< eip1q(t1)/r · · · e = e 2r . 

(the second summand disappears as L → ∞, and we recover the answer on the line). 
It is, however, more natural (as we will see later) to integrate over all (and not only degree zero) 

maps q. Namely,  let  N be an integer. Then all maps of degree N have the form q(t)+  2πrN t/L, where  
q is a map of degree zero. Thus, if we want to integrate over maps of degree N , we should compute the 
same integral as in degree zero, but with shift q → q + 2πrN t/L. But it is easy to see that this shift 
results simply in rescaling of the integrand by the factor e2πi 

P
pj tj N/L−2π2 r 2N 2/�L . Thus, the integral 

over all maps should be defined by the formula 
ipn q(tn )/r >=< eip1q(t1)/r · · · e
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� 
2 (

P
l<j pl pj |tl −tj |+(

P
pj tj )

2/L) 

� 
N e

2πi(
P

pj tj )N/L−2π2 r 2N 2/�L 

e 2r . � 
N e

−2π2r2N 2/�L 
. 

Introduce the elliptic theta-function 

θ(u, T ) =  e 2πiuN −TN  2/2 

N ∈Z 

Then the last formula (for t1 ≥  · · ·  ≥  tn) can be rewritten in the form 
2 

� 
2 (

P
j (tj+1−tj )(p1+···+pj )

2+(
P

pj tj )
2/L) θ( 

P
pj tj 4π2 r ) 

.(20) < eip1q(t1)/r · · · eipn q(tn )/r >= e 2r
L , 

�L 
2 

θ(0, 4π
�

2

L
r ) 


