18.303 Midterm Solutions, Fall 2014
Problem 1:

Define the inner product (u,v). = [, civ = [, v = (cu,v) where (u,v) = [, @v . Then (u, Av)e = (cu, (cv)") =
((cu)”, cv) = (cAu,v) = (Au, v>c, where we have used the self-adjointness of d?/dz? under (-,-) from class. Therefore,
A = A* under the (u, v). inner product (which is a proper inner product for real ¢ > 0).

Problem 2:

We need —V?2g = §(x), and we determine this by evaluating both sides with an arbitrary test function ¢, using the
distributional derivative (—V?2g){¢} = g{—V?%} as in class. In cylindrical coordinates:
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To get ¢ = ¢(0), therefore, we need .

Problem 3:

It is convenient to write D, = D — oI, where I is the 2 x 2 identity matrix. Then it follows from D* = —D and
(0I)* = ol (since o is a real scalar and I is obviously self-adjoint) under the usual inner product (w,w’) = [, w*w’

that we have D* = —D — oI and D, + D* = —201.

(a) For a solution w of D,w = dw/dt , we have
(w,w)/0t = (Ow/Ot,w) + (w, 0w /Ot)
= (Dyw, W) + (w, Dyw)
— (w, Dyw) + (w, Dow) = (w, (D + Do) w)

= —2(w,ow) = 72/0(30)||w(x)||2 <0
and hence ||w|? = (w,w) is decreasing in time.

If o(x) > o9 > 0 for some o, then we can go further and say that E(t) = ||w||? is decaying at least expo-
nentially fast in time, since in that case dE/dt < —20(FE and from this one can show that E(t) < E(0)e~ 270t

(i) Given an eigensolution Dywy, = AW , we can consider
Wy (Do + DE)Wy) = —2(W,,, owy,)
= (Wn, Dewp) 4+ (Dywp, wy)
= (Wp, A Wi ) + (A Wi, wi)
= ()\n +E) (Wp, Wp) = (Wp, wp)2ReA,.

Note that we moved D; to act on the left via its adjoint. It is not in general true that D;wn = A\, W,

Then we have:
<Wna O'Wn>

(Wn, Wn)
since o > 0. Hence the eigensolutions are decaying exponentially in time (while they oscillate via the
imaginary part of \,), from their time dependence e**.

Re ), = — <0



Problem 4:

We will have 0u/0t = Ov/0x — ou and Jv/It = Ou/Ox — ov, so the only new terms are the o terms. In the discretized

n n+1
Ou/dt equation, the left-hand side is evaluated at point m and time n+0.5, so we have to get u9-° = WF%—I—O(AL‘Q)
by averaging (similarly to how we handled the Crank-Nicolson discretization in class). Similarly for the Ov/dt equation.
Hence, we obtain:
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Solving for w1 and vﬁl':_%%, we obtain the “leap-frog” equations:
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Note that o > 0, so we are never dividing by zero in 1 + 0 At/2, regardless of At, which is comforting.
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