A few important PDEs

(one of several possible examples of)

constant coefficients = 1 variable coefficients = c(X)
Poisson’s equation: Viu=f V-(cVu)=f
example: f = charge density, ¢ = permittivity €
u = —electric potential
example: f = heat source/sink rate ¢ = thermal conductivity
u = steady-state temperature
example: f = solute source/sink rate, ¢ = diffusion coefficient
u = steady-state concentration
example: f ~ force on stretched string/drum ¢ ~ “springy-ness”

u = steady-state displacement

Laplace’s equation: Viu=0 V-(cVu)=0

examples: as for Poisson, but no sources

Heat/diffusion equation: u Ju
d —=V’u —=V-(cVu)
ot ot
examples: u = temperature ¢ = thermal conductivity
u = solute concentration ¢ = diffusion coefficient
ion: 2 u
Scalar wave equation: d 124 _Vy ‘_v. (cVu)
ot ot
examples: u = displacement of stretched string/drum =1/ wave speed

u = density of gas/fluid

+ many, many others...

Maxwell (electromagnetism)
Schrodinger (quantum mechanics)

Navier—Stokes / Stokes / Euler (fluids)
Black-Scholes (options pricing)

Lamé—Navier (linear elastic solids)
beam equation (bending thin solid strips)

advection-diffusion (diffusion in flows)

reaction-diffusion (diffusion+chemistry)

minimal-surface equation (soap films)

nonlinear wave equation (e.g. solitary ocean waves)
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unknowns:

linear operators:

dot product
and transpose:

basis:

linear equations:

existence
& uniqueness:

eigenvalues/vectors:

time-evolution
initial-value
problem:

real-symmetric
or Hermitian:

positive definite
/ semi-definite:

inverses:

(real) orthogonal
or unitary:

18.06

finite-dimensional linear algebra

vector space of
column vectors x (orx ) in R (or Cn),
or possibly x(t) [time-dependent]

vector space:
we can add, subtract, &
multiply by constants
without leaving the space

matrices A

linearity:
A(ax+py) = 0Ax + [Ay
A(om+pv) = aAu + Av

X y=xy=2xy
X - Ay = X"Ay = (Ax)"y
< (A)";=A; [conjugate & swap rows/cols]

xT — xT=x"

set of vectors b; with span = whole space
< any X = 2, ¢; b; for some coefficients c;
... if orthonormal basis, then ¢; = b;"x

solve Ax = b for x

Ax = b solvable if b in column space of A.
Solution unique if null space of A = {0},
or equivalently if eigenvalues of A are # 0.

solve Ax = Ax for x and A.
For this x, A acts just like a number (A).
[e.g. A’ = N'X, e?x = e’x.]

solve dx/dt = Ax for x(0)=b
=x=eMb [if A constant ]
... expand b in eigenvectors, mult. each by e

[system of ODEs]
A=A"
=> real A, orthogonal eigenvectors, diagonalizable

A=A"x"Ax>0foranyx#0 / x'Ax=0
< real \>0/20, A=B"B for some B

complex x: ( P )

[e.g.
Fourier series! |

18.303

linear algebra w/ functions & derivatives

vector space of real-valued (or complex)
functions u(x) [for x in some domain Q],
or possibly u(x,t) [time-dependent],

possibly restricted by some boundary conditions
at the boundary 0Q2 [e.g. u(x) = 0 on 9]

possibly with vector-valued u(x) [vector fields]

linear operators on functions A,
[ Au= function |
using partial derivatives. examples:
Au=V2u [ Laplacian operator ]
Azu =3u [ mult. by constant ]
A3u l, = a(x) u(x) [ mult. by function ]
A=4A + A, + 7143 [ linear comb. of ops. ]

[inner product]
[= some integral]

o set of functions b,(x) with span = whole space
< any u(x) = 2, ¢; b,(x) for some coefficients c;

i i Y

... if orthonormal basis, then c; = (b,, u)
solve Au = ffor u(x)

Au = fsolvable if f{x) in col. space (image) of A.
Solution unique if null space (kernel) of A={0},
or equivalently if eigenvalues of A are # 0.

solve Au = u for u(x) [eigenfunction] and A.
For this u, A acts just like a number (A).

[e.g. A'u = }\-nl/l, eAM = e)\'l/l.] # example:
?Siﬂ(kx) = (—kz)sin(kx)
X~

solve du/dt = Au for u(x,0)=f(x)

= u(x,f) = et fx) [if A constant |
... expand f in eigenfunctions, mult. each by ¢

A=A
=> real A, orthogonal eigenvectors (??7)
diagonalizable (?77?)

A=A, (wAuy>0 /=0 foru=0 (277)
< real A>0/=0, A=B"B for some B (77?)

important fact: ~V? is symmetric positive definite or semi-definite!

ATA=AA =1 [if it exists] (2) -
=> Ax=b solved by x = A"'b
Al=A" < (AX) - (Ax) =x - x for any x

= |Al=1, orthogonal eigenvectors, diagonalizable

... some kind of integral?

[...delta functions
& Green'’s functions]

= Au =fsolved by f= A1y 77?

AV = A" < (Au,Au) = (uu) for any u
=> [M=1, orthogonal eigenvectors (???)
diagonalizable (7?7?)
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