
1

Lecture 11

(Finished discussion of Neumann from previous lecture: mass flux, conservation of mass in the
diffusion equation, and other conservation laws.)

2d finite-difference discretizations: discretized the 2d Laplacian operator ∇2 in an Lx×Ly box
with Nx×Ny points, for Dirichlet (0) boundaries, so that u(mΔx,nΔy) is approximated by NxNy
degrees of freedom um,n. Showed that simply applying the 1d center-difference rule along x and y
results in a (famous) "5-point stencil" approximation for -∇2 in which the Laplacian at (nx,ny)
depends on u at (nx,ny) and the 4 nearest-neighbor points.

In order to express this as a matrix A, however, we need to "flatten" the 2d grid of points unx,ny
into a single column vector u with NxNy components. There are multiple ways to do this, but a
standard and easy scheme is the "column-major" approach in which u is formed from the
contiguous columns (x) unx,: concatenated in sequence. (This is the approach used internally
within Matlab to store matrices.)

Given this, we then see how to form ∂2/∂x2 by operating one Nx-column at a time, using the the
Nx×Nx discrete 1d Laplacian Ax (=-Dx

TDx). The ∂2/∂x2 matrix is simply a matrix with Ax along
the diagonal Ny times, which differentiates each Nx-column block by block. The ∂2/∂y2 matrix is
a little tricker, but if we think of operating on whole columns then we see that it is just the Ay
matrix with the entries "multiplied" by Nx×Nx identity matrices Ix.

In order to have a convenient way to express this, we use the Kronecker product notation A⊗B
[kron(A,B) in Matlab], which multiplies the entries of A by the matrix B to create a matrix of

matrices. In this notation, A = Iy⊗Ax + Ay⊗Ix.

Using this machinery, constructed A for Nx=10 and Ny=15 for Lx=1 and Ly=1.5 in Julia.
Visualized the pattern of nonzero entries with spy. Solved for the eigenfunctions, and plotted a
few; to convert a column vector u back into a 2d matrix, used reshape(u,Nx,Ny), and plotted in
3d with the surf command. The first few eigenfunctions can be seen to roughly match the
sin(nxπx/Lx) sin(nyπx/Ly) functions we expect from separation of variables. However, Nx=10,
Ny=15 is rather coarse, too coarse a discretization to have a really nice (or accurate) picture of
the solutions.

In order to increase Nx and Ny, however, we have a problem. If the problem has N=NxNy degrees
of freedom, we need to store N2 numbers (8N2 bytes) just to store the matrix A, and even just
solving Ax=b by Gaussian elimination takes about N3 arithmetic operations. Worked through a
few numbers to see that even Nx=Ny=100 would have us waiting for 20 minutes and needing a
GB of storage, while 3d grids (e.g. 100×100×100) seem completely out of reach. The saving
grace, however, is sparsity: the matrix is mostly zero (and in fact the 5-point stencil A has < 5N
nonzero entries). This means that, first, you can store only the nonzero entries, greatly reducing
storage. Second, it turns out there are ways to exploit the sparsity to solve Ax=b much more
quickly, and there are also quick ways to find a few of the eigenvalues and eigenvectors.

https://en.wikipedia.org/wiki/Five-point_stencil
http://en.wikipedia.org/wiki/Row-major_order
http://en.wikipedia.org/wiki/Kronecker_product
http://www.mathworks.com/help/techdoc/ref/kron.html
http://www.mathworks.com/help/techdoc/ref/spy.html
http://www.mathworks.com/help/techdoc/ref/surf.html
http://www.mathworks.com/help/techdoc/ref/reshape.html
http://en.wikipedia.org/wiki/Sparse_matrix

2

In Julia, you exploit sparsity by using the sparse command and friends to create sparse matrice.
Once you have a sparse matrix, Matlab automatically uses algorithms to exploit sparsity if you
solve Ax=b by x=A\b and use the eigs function to find a few eigenvalues (instead of eig).

Starting with the ∇2 operator on a square grid, showed how we can convert to any other Ω shape
with Dirichlet boundaries just by taking a subset of the rows/cols (as in problem 2 of pset 5).
Recovered the Bessel solutions for a circular domain.

Further reading: Section 3.5 of the Strang book on 2d finite differences, section 7.1 on
sparsity. See, for example min-max theorem in Wikipedia, although this presentation is rather
formal. Unfortunately, most of the discussion you will find of this principle online and in
textbooks is either (a) full of formal functional analysis or (b) specific to quantum mechanics
[where the operator is A=-∇2 +V for some "potential-energy" function V(x)].

http://en.wikipedia.org/wiki/Min-max_theorem

MIT OpenCourseWare
http://ocw.mit.edu

18.303 Linear Partial Differential Equations: Analysis and Numerics
Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

