
Lecture 20 

3 Example: Inhomogeneity in a small volume
Suppose we are solving −∇ · (c∇u) = f in Ω = R3 with a point source f(x) = δ(x − x0)
at x0. Furthermore, suppose that c(x) is piecewise-constant as in figure 1, with c(x) = c2
everywhere except in a volume V , centered at x1, where c(x) = c1. Now, suppose that we
want the solution u(x), but are far from V : both the source point x0 and the desired point
x are far from V , with |x1−x0| and |x1−x| both much bigger than the diameter of V . This
is shown schematically in figure 2. In this case, we should expect the effect of the “scattered”
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Figure 2: Schematic of problem with an inhomogeneity in a small volume V (centered at
x1): we have a source at x0 and want the solution at x, with both x0 and x much farther
from x1 than the diameter of V .

solution from V to be small at x, and a Born approximation should apply. Furthermore,
we will assume c1 ≈ c2 (though not exactly equal!), so that we can neglect the effect of
the discontinuity in ∇u mentioned after equation (3) above (which greatly complicates the
application of any Born-like approximation in this problem because it would prevent us from
using u ≈ u0 in V ).3

In this case,
1

u0(x) = G0(x,x0)/c(x0) = ,
4πc2|x− x0|

so in the Born approximation we write:

u(x) ≈ u0(x) + B̂u0,

where the scattered part of the solution, applying the SIE form (4) [valid when c1 ≈ c2], is

B̂u0 = ln(c2/c1)
‹

G0(x,x′)∇′u0(x′)
dV

· dA′

= ln(c2/c1)
˚

∇′ · [G0(x,x′)∇′u 3
0(x′)] d x′

V

�= ln(c2/c1)
˚ [

∇′G0(x,x′) · ∇′u0(x′) +G
V

∇�20�
′ u0

]
d3x′,
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3It turns out that many people get this wrong in electromagnetism for cases when c1 and c2 are very
different, as discussed in my paper on a closely related subject, “Roughness losses and volume-current
methods in photonic-crystal waveguides,” Appl. Phys. B 81, 238–293 (2005): http://math.mit.edu/
~stevenj/papers/JohnsonPo05.pdf
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where in the second line we applied the divergence theorem, and in the third line the product
rule led to a ∇2u0 term, where ∇2u0 = −δ(x− x0) is zero in V (since x0 is outside of V ).

Now, since V is small compared to the distance from x and x0, the distances |x′−x| and
|x′−x0| hardly change for any x′ ∈ V , and so the ∇′G0 and ∇′u0 terms are approximately
constant in this integral and we can just pull them out, giving the approximation:

B̂u0 ≈ ln(c2/c1) ∇′G0(x,x′) · ∇′u0(x′)|x′=x1
volume(V ).

We can compute these gradients explicitly:

1∇′
|x′ − y|

= − x′ − y
,

|x′ − y|3

and hence:
1

u(x) ≈
4πc2|x− x0|

+ ln(c2/c1)
(x1 − x) (x

4π|x1 − x|3
· 1 − x0)

4πc2|x1 − x0|3
volume(V ). (5)

Notice that the amplitude of the scattered term vanishes as volume(V ) → 0, as expected.
Notice that it also depends on the sign of (x1 − x) · (x1 − x0). Why is that? What does a
∇′G0 source “mean,” physically?

3.1 Dipole sources
Consider the following problem in Ω = R3, requiring as usual that solutions vanish at ∞:

−∇2Dp(x,x′) = −p · ∇δ(x− x′) = +p · ∇′δ(x− x′).

This is like the Green’s function equation, except now we have put the derivative of a delta
function on the right-hand side, with some constant vector p (the “dipole moment”). Recall
what the derivative of a delta function is:

φ(x′ + εp)
[ p δ(x x′)] φ = [δ(x x′)] p φ = p φ x = lim′

− φ(x′ − εp)− · ∇ − { } − { · ∇ } · ∇ |
ε→0

,
2ε

and hence (similar to pset 5 of 2010 or pset 7 of 2011),

δ(x x′
p δ(x x′) = lim

− − εp)− δ(x− x′ + εp)− · ∇ −
ε→0

.
2ε

That is, the derivative of a delta function is a limit of limit of two delta functions of opposite
sign, displaced proportional to p. In 8.02, where delta functions are “point charges,” this is
what you would have called an “electric dipole.”

We can solve for Dp quite easily, because we know the solution G0 to −∇2G0(x,x′) =
δ(x− x′), and ∇ and ∇′ derivatives can be interchanged in their order:

−p · ∇δ(x− x′) = p · ∇′ [δ(x− x′)] = p · ∇′
[
−∇2G0(x,x′)

]
= −∇2 [p · ∇′G0(x,x′)] ,

and hence
x x′

Dp(x,x′) = p · ∇′G0(x,x′) = p
−· .

4π|x− x′|3

x0 +
+

+
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In electrostatics, ths would be the potential of a dipole. Note that this falls off as ∼
1/|x− x′|2, whereas G0 falls off as ∼ 1/|x− x′|.

Given this solution, we can now interpret the scattered part of the solution (5) above: a
small inhomogeneity gives an effective dipole source p at x1, where

(x )
p = − ln( 1

c2/c1
− x

) 0 volume(V ).
4π|x1 − x0|3

In electrostatics, for a typical case where V is a small piece of matter in vacuum, c2 < c1,
so p is parallel to x1 − x0. Physically, a positive point charge induces a dipole moment p
pointed away from the charge, because a “+” charge at x0 pushes “+” charges in V away
from it, as shown below.
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