
Lecture 28 

Began discussing general topic of waveguides. Defined waveguides: a wave-equation system 
that is invariant (or periodic) in at least one direction (say y), and has some structure to confine 
waves in one or more of the other "transverse" directions. A simple example of a waveguide 
(although not the only example) consists of waves confined in a hollow pipe (either sound waves 
or electromagnetic waves, where the latter are confined in metal pipe). Began with a simple 2d 
example: a waveguide for a scalar wave equation that is invariant in y and confines waves with 
"hard walls" (Dirichlet boundaries at x=0 and x=L) in the x direction. In such a wave equation, 
or any wave equation that is invariant in y, the solutions are separable in the invariant direction, 
and the eigenfunctions u(x,y)e-iωt can be written in the form uk(x)ei(ky-ωt) for some function uk and 
some eigenvalues ω(k). In this case, plugged the separable form into the scalar wave equation 
and immediately obtained a 1d equation for uk: uk''-k2uk=-ω2uk, which we solved to find 
uk=sin(nπx/L) for ω2=k2+(nπ/L)2. Plotted the dispersion relation ω(k) for a few guided modes 
(different integers n), and discussed what the corresponding modes look like.  

Commented on the k goes to 0 and infinity limits where the group velocity goes to 0 and 1 (c), 
respectively. As k goes to zero, the group velocity goes to zero but the phase velocity diverges; 
discuss what this means.  

Discussed superposition of modes: explain that if we superimpose say the n=1 and n=2 modes at 
the same ω and nearby k, what we get is a "zig-zagging" asymmetrical solution that bounces 
back and forth between the walls at intervals π/Δk. This is what we might get if we add an off-
center source term, for example.  

Discussed the existence of a low-ω cutoff for each mode and its implications. As we increase the 
frequency of a source term, it excites more and more modes (a quantum analogue of this 
phenomenon is quantized conductance in nanowires!). Moreover, by Taylor-expanding the 
dispersion relation near the cutoff as a quadratic function, we can solve for the solutions slightly 
below cutoff, and see that they must have imaginary k and hence be exponentially

decaying/growing. These are called evanescent modes (as opposed to propagating modes for 
real k), and can only be excited by a localized source or some break or boundary in the 
waveguide (e.g. an endfacet); they are what you get if you try to vibrate a membrane below 
cutoff!  

Waveguide movies: for a 2d waveguide of width L, put an off-center source at one end that 
turns on around t=0 to a sinusoidal forcing of frequency f=ω⋅L/2πc, and showed some movies of 
computer simulations. First, considered a waveguide with hard ("metal") walls like the previous 
example; depending on how f relates to the mode cutoffs (at 0.5, 1.0, 1.5, ...), we get very 
different results. Then, considered a source in an infinite homogeneous (c=1) medium 
("vacuum"), which just gives waves radiating outwards in every direction. Finally, considered a 
medium that is c=1 in a width L, and outside is c=2: this gives waveguiding by a very different 
mechanism, "total internal reflection". 

http://www.lorentz.leidenuniv.nl/beenakkr/mesoscopics/topics/qpc/physics_today/node2.html
http://www-math.mit.edu/~stevenj/18.303/waveguide-movies/
http://www-math.mit.edu/~stevenj/18.303/waveguide-movies/
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