
Lecture 30 

Guidance, reflection, and refraction at interfaces between regions with different wave speeds c: 

Started with the solutions of the scalar wave equation in infinite space with a constant coefficient 
(speed) c: plane waves u(x,t)=ei(k⋅x-ωt), satisfying ω=c|k|, where k is the wavevector and indicates 
the propagation direction and the spatial wavelength 2π/|k|.  

Now, considere what happens when a plane wave in a region with speed c1 is incident upon an 
interface at x=0 to another region with speed c2. In general, we expect a transmitted wave and a 
reflected wave. At x=0, we will have some continuity conditions depending on the specifics of 
the wave equation (e.g. u continuous), and these continuity conditions must be satisfied at all y

and at all t. The only way to satisfy the same continuity conditions at all y is for all of the waves 
to be oscillating at the same speed in the y direction at x=0, i.e. that they must all have the same 
ky, and the only way to satisfy the same continuity conditions at all t is for the waves to be 
oscillating at the same ω. Writing ky=|k|sinθ=(ω/c)sinθ, we immediately obtain two results. First, 
the reflected angle is the same as the incident angle. Second, (1/c1)sinθ1=(1/c2)sinθ2. In optics, 
these are known as the Law of Equal Angles and Snell's Law respectively, but they are generic 
to all wave equations.  

If c1<c2, then showed that there are no real θ2 solutions for a sufficiently large angle θ1. In optics, 
you probably learned this as total internal reflection, but it is general to any wave equation. 
Then, if we have two interfaces, with c1<c2 sandwiched between two semi-infinite c2 regions, we 
can obtain guided modes that are trapped mostly in c1, and can crudely be thought of as "rays" 
bouncing back and forth in c1, "totally internally reflected". More carefully, showed that "totally 
internally reflected" solutions correspond to exponentially decaying solutions in c2, which are 
called evanescent waves.  

To obtain a more general picture, we imagine writing down the dispersion relation ω(k) for such 
a waveguide, looking as usual for separable eigenfunctions uk(x)ei(ky-ωt). Far from the c1 region, 
the solutions must just be planewaves propagating in c2, with ω=c2|k|=c2k secθ, since k is just the 
y component of k, where θ is the angle with the y axis. Plotting all of these solutions forms a 
continuous cone covering ω(k)≥c2k (called the "light cone" in optics): this cone is all the wave

solutions that propagate in c2. The light cone for the c1 region has a lower slope (c1), and hence 
the c1 region will introduce new guided solutions below the c2 cone which are evanescent in c2. 
In the next lecture, I will argue that a finite-thickness c1 region leads to a finite number of guided 
modes below the c2 cone, and give numerical examples. 

Further reading: You can find many explanations of Snell's law, total internal reflection, 
etcetera, online. For a treatment in the context of the scalar wave equation, see e.g. Haberman, 
Elementary Applied Partial Differential Equations section 4.6. For a treatment in Maxwell's 
equations, see any elementary electromagnetism book; our book (chapter 3) has an abstract 
approach with a light cone etcetera mirroring the one here.

http://ab-initio.mit.edu/book
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