Lecture 30
Guidance, reflection, and refraction at interfaces between regions with different wave speeds c:

Started with the solutions of the scalar wave equation in infinite space with a constant coefficient
(speed) c: plane waves u(x,t)y=e'*xo, satisfying w=c|K|, where K is the wavevector and indicates
the propagation direction and the spatial wavelength 27/|K|.

Now, considere what happens when a plane wave in a region with speed c; is incident upon an
interface at x=0 to another region with speed c,. In general, we expect a transmitted wave and a
reflected wave. At x=0, we will have some continuity conditions depending on the specifics of
the wave equation (e.g. u continuous), and these continuity conditions must be satisfied at all y
and at all t. The only way to satisfy the same continuity conditions at all y is for all of the waves
to be oscillating at the same speed in the y direction at x=0, i.e. that they must all have the same
ky, and the only way to satisfy the same continuity conditions at all t is for the waves to be
oscillating at the same ®. Writing ky=|K|sinf=(w/c)sinf, we immediately obtain two results. First,
the reflected angle is the same as the incident angle. Second, (1/c;)sinf;=(1/c;)sin6,. In optics,
these are known as the Law of Equal Angles and Snell's Law respectively, but they are generic
to all wave equations.

If ¢;<c,, then showed that there are no real 6, solutions for a sufficiently large angle 0. In optics,
you probably learned this as total internal reflection, but it is general to any wave equation.
Then, if we have two interfaces, with c¢;<c, sandwiched between two semi-infinite c, regions, we
can obtain guided modes that are trapped mostly in c;, and can crudely be thought of as "rays"
bouncing back and forth in c;, "totally internally reflected". More carefully, showed that "totally
internally reflected" solutions correspond to exponentially decaying solutions in c,, which are
called evanescent waves.

To obtain a more general picture, we imagine writing down the di%(aersion relation o(k) for such
a waveguide, looking as usual for separable eigenfunctions uy(x)e'™ Y. Far from the ¢, region,
the solutions must just be planewaves propagating in c¢,, with w=c,|K|=c,k secb, since k is just the
y component of K, where 0 is the angle with the y axis. Plotting all of these solutions forms a
continuous cone covering w(k)>cyk (called the "light cone" in optics): this cone is all the wave
solutions that propagate in c,. The light cone for the c; region has a lower slope (¢), and hence
the ¢; region will introduce new guided solutions below the ¢, cone which are evanescent in c,.
In the next lecture, I will argue that a finite-thickness c¢; region leads to a finite number of guided
modes below the ¢, cone, and give numerical examples.

Further reading: You can find many explanations of Snell's law, total internal reflection,
etcetera, online. For a treatment in the context of the scalar wave equation, see e.g. Haberman,
Elementary Applied Partial Differential Equations section 4.6. For a treatment in Maxwell's
equations, see any elementary electromagnetism book; our book (chapter 3) has an abstract
approach with a light cone etcetera mirroring the one here.
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