
Lecture 5 

Finished negative-definiteness proof from previous lecture. 

Discussed diagonalizability of infinite-dimensional Hermitian operators. Unlike the proof of real 
eigenvalues, etcetera, we cannot simply repeat the proof from the matrix case (where one can 
proceed by induction on the dimension). In practice, however, real-symmetric operators arising 
from physical systems are almost always diagonalizable; the precise conditions for this lead to 
the "spectral theorem" of functional analysis.) (One hand-wavy argument: all physical PDEs can 
apparently be simulated by a sufficiently powerful computer to any desired accuracy, in 
principle. Since the discrete approximation is diagonalizable, and converges to the continuous 
solution, it would be surprising if the eigenfunctions of the continous problem "missed" some 
solution. In fact, all the counter-examples of self-adjoint operators that lack a spectral theorem 
seem to involve unphysical solutions that oscillate infinitely fast as they approach some point, 
and hence cannot be captured by any discrete approximation no matter how fine.) In 18.303, we 
will typically just assume that that all functions of interest lie in the span of the eigenfunctions, 
and focus on the consequences of this assumption.  

Showed how this immediately tells us key properties of the solutions, if we assume the spectral 
theorem: Poisson's equation has a unique solution, the diffusion equation has decaying solutions 
(with larger eigenvalues = faster oscillations = decaying faster, making the solution smoother 
over time), and the wave equation has oscillating solutions.  

Not only do we now understand d2/dx2 at a much deeper level, but you can obtain the same 
insights for many operators that cannot be solved analytically. For example, showed that the 
operator d/dx [c(x) d/dx], which is the 1d Laplacian operator for a non-uniform "medium", is 
also real-symmetric positive definite if c(x)>0, given the same u(0)=u(L)=0 boundary conditions. 

As another example, considered the operator c(x)d2/dx2 for real c(x)>0. This is not self-adjoint 
under the usual inner product, but is self-adjoint if we use the modified inner product ⟨u,v⟩=∫uv/c 
with a "weight" 1/c(x). (This modified inner product satisfies all of our required inner-product 
properties for positive c(x).) Therefore, c(x)d2/dx2 indeed has real, negative eigenvalues, and has 
eigenfunctions that are orthogonal under this new inner product. Later on, we will see more 
examples of how sometimes you have to change the inner product in order to understand the self-
adjointness of Â.  

Fortunately, it's usually pretty obvious how to change the inner product, typically some simple 
weighting factor that falls out of the definition of Â. (In fact, for matrices, it turns out that every 
diagonalizable matrix with real eigenvalues is Hermitian under some modified inner product. I 
didn't prove this, however.)  
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