
Lecture 6 

Previously, we started with the continuous PDE equations and derived a discrete/matrix version 
as an approximation. Now we will do the reverse: we will start with a truly discrete (finite-
dimensional) system, and then derive the continuum PDE model as a limit or approximation. 
This is one of the common ways by which PDE models are derived in the first place, will give 
yet another perspective on similar mathematics, and will also shed some light on the origin of the 
variable c(x) coefficients from the last lecture.  

In particular, we look at the 8.01 (or 8.03) system of a set of N masses m sliding without friction 
and connected by springs of constant k, anchored to walls on both sides.  

If the displacements of each mass are given by a vector u, we show that d2
u/dt2=Au where A = 

(k/m) (-DTDT) Δx2, with D being exactly our "first derivative" matrix from previous lectures. 
Thus, up to a scale factor, our discrete Laplacian A from previous lectures is not only an 
approximation for d2/dx2, but it is also exactly the matrix describing this coupled-spring system! 

By inspection, A is real-symmetric negative-definite as before, and hence we have N real 
eigenvalues λn<0 and orthonormal eigenvectors un. By expanding the solution u(t) in terms of 
these eigenvectors, we see that we obtain oscillating solutions: a set of (orthogonal) normal

modes with real "eigenfrequencies" ωn=√-λn. The negative-definiteness is critical to have 
oscillation, as otherwise we would get complex ωn and exponential growth! Showed a few 
examples for N=1,2,3 to get an intuition for these modes.  

Took the N→∞ limit keeping the total length L fixed, which corresponds to Δx→0 (breaking the 
system into smaller and smaller pieces). Correspondingly, we decrease the masses proportional 
to Δx, so that m=ρΔx where ρ is a density. On the other hand, reminded ourselves that cutting 
springs in half increases the spring constant, so we should let k=c/Δx for some constant c. With 
these definitions, our matrix A is precisely (c/ρ) (-DTD), where -DTD is our approximate (center-
difference) d2/dx2 from before, and hence this limit gives precisely the scalar wave equation 
∂2u/∂t2=(c/ρ) ∂2u/∂x2, with the boundary conditions u(0,t)=u(L,t)=0 (fixed ends). As before, this 
operator is self-adjoint negative definite and so we get real λn<0 etcetera. Exactly as in the finite-
dimensional case above, we therefore get oscillating "normal mode" solutions, just with an 
infinite series of eigenfunctions instead of a finite sum.  

Finally, considered the "inhomogeneous medium" case where we allow all the masses and spring 
constants to be different. Showed that this corresponds to inserting some diagonal matrices into 
the above expressions, and in the continuum limit gives ∂2u/∂t2=(1/ρ) ∂/∂x (c ∂u/∂x)=Âu where 
ρ(x) and c(x) are positive functions. As in the previous lecture, we can see that this Â is indeed 
self-adjoint negative-definite, and hence we get oscillating normal-mode solutions, if we define 
the modified inner product ⟨u,v⟩=∫ρuv. And we can see this even though we probably cannot 
solve this PDE by hand except for very special cases of ρ and c! 

Further reading: Same as previous lecture. Sections 2.1 and 2.2 in the Strang book cover very 
similar material on discrete vibration problems.
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