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1 Homogeneous media
Suppose we have Poisson’s equation with constant coefficients (= 1 for simplicity), i.e. in a
homogeneous medium, i.e. in “empty space”, i.e.

−∇2u = f

in some region Ω, with boundary conditions so that this has a unique solution, e.g. Dirichlet
boundaries u|dΩ = 0. Then we can write the solution in terms of the Green’s function
G0(x,x′):

u(x) =
ˆ

G (x,x′)f(x′)dn0 x′, (1)
Ω

in n dimensions, where −∇2G0(x,x′) = δ(x−x′). For example, if Ω = R3, then G0(x,x′) =
1

4π|x−x′ .|

2 Inhomogeneous media
Now, suppose we have non-constant coefficients c(x) > 0, corresponding to an inhomoge-
neous medium (i.e. different “materials” at different points in space). This could enter
Poisson’s equation in several ways, for example:

1. −c∇2u = f — for example, in a stretched string or drum, 1/c would be proportional
to the density, so c(x) would represent a variable density.

2. −∇·(c∇u) = f — for example, in electrostatics
√
c would be proportional to the refrac-

tive index; in a stretched string or drum c would be proportional to a tension/elasticity;
in a diffusion problem c would be a diffusion coefficient; in a heat-conduction problem
c would be proportional to a thermal conductivity.

3. −∇2u+cu = f — for example, in quantummechanics this would represent Schrödinger’s
equation with a variable potential energy c.

4. Various other generalizations and combinations. e.g. a multidimensional Sturm–
Liouville equation, −c1∇ · (c2∇u) + c3u = f , for different functions c1,2,3(x) (and
c2 could even be a positive-definite matrix).

All of these are of the form Auˆ = f where Â is self-adjoint and positive-definite (assuming
zero Dirichlet boundary conditions and an appropriate inner product 〈u, v〉), as we’ve seen
previously in class, so they should have unique solutions (excluding pathological c functions).
However, the solutions may in general be quite different from those of −∇2u = f . Can we
relate them to G0, the Green’s function for empty space?
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2.1 −c∇2u = f

This case is quite trivial to relate to empty space: just rewrite it as −∇2u = f/c (valid since
c > 0), in which case we can use eq. (1) to obtain

ˆ
f(x′)

u(x) = G0(x,x′)
Ω

dnx′,
c(x′)

from which it follows that the Green’s function of this problem is G(x,x′) = G0(x,x′)/c(x′).

2.2 −∇ · (c∇u) = f

To make it look like empty space, we employ the product rule to write ∇(c∇u) = (∇c) ·
(∇u) + c∇2u, obtaining:

−∇2 f
u =

c
+
∇c

u.
c
· ∇

If we substitute the right-hand side as if it were “f ” in the empty-space problem, from
eq. (1), and note that (∇c)/c = ∇ ln c, we obtain:

)
u(x) =

ˆ
G0(x, ′)

Ω

[
f(x′

x + ′[ln c(x′)] ′u(x′) dnx′. (2)
c(x′)

∇ · ∇
]

Notice, however, that the unknown u appears on both the left- and right-hand sides. This is
a volume integral equation1 for u(x). There are various numerical methods to solve such
“VIE” problems approximately by discretizing space, but we won’t cover these in 18.303.
However, there are still several lessons to be learned from this equation. First, one can think
of the inhomogeneous solution as the sum of “homogeneous” solutions G0(x,x′) from the
right-hand-sides f(x′)/c at x′ plus a “scattered” solution from the solution u creating
new source terms at inhomogeneities ∇c. Second, there are various general situations
where this VIE simplifies considerably. In the following, denote

u0(x) =
ˆ

f(x′)
G0(x,x′)

Ω

dnx′,
c(x′)

the part of u(x) that doesn’t come from the inhomogeneity ∇c, the “incident” solution.
We then can write u = u0 + B̂u where B̂ is the linear integral operator corresponding to
B̂u =

´
G0∇′ ln c · ∇′u.

(This terminology of “incident” and “scattered” parts of the solution has its origins in
wave-equation problems, where the solution represents a wave propagating outwards from a
source f , and is actually bouncing off of objects/inhomogeneities. In the present problem,
there is no time dependence so this terminology is only an analogy.)

2.2.1 Piecewise-homogeneous media

The most common and important case of inhomogeneous media is where c(x) is piecewise-
constant. e.g. in one region you have glass, in another region you have metal, and in
another region you have water, each corresponding to a different constant value of c.

For example, suppose we have Ω = R3, with −∇·(c∇u) = f for the situation depicted in
figure 1: c(x) = c1 in some volume V and = c2 outside of V . In this case ∇ ln c is actually
a delta function at the interface, multiplied by the magnitude ln c2 − ln c1 = ln(c2/c1) of

1More specifically, it is a “second-kind” integral equation, since u appears both inside and outside the
integral.
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Figure 1: Schematic example of piecewise-constant coefficients c(x): c(x) = c1 in some
region V (with boundary dV , and n̂ denoting the outward unit-normal vector), and c(x) = c2
otherwise.

the discontinuity, also multiplied by a unit-normal vector n̂ at each point on the interface
(giving the direction ∇ ln c). Then the VIE (2) simplifies to u0 plus a surface integral :

u(x) = u0(x) + ln(c2/c1)
‹

G0(x,x′)∇′u(x′)
dV

· dA′, (3)

where dA′ = n̂dA′ is the usual outward-normal differential area in a surface integral. This
is now a surface integral equation (SIE) for u(x): once we know n̂ ·∇u on the surface, we
can get u(x) everywhere! Physically, this can be interpreted as “scattering” of the solution
off the interface between c1 and c2, as represented by “source” terms at every x′ ∈ dV .

However, this isn’t quite right. The problem is that ∇u · n̂ isn’t actually continuous
across the interface in general, and so evaluating it on the surface dV is not well-defined.
We can see this by looking at the original equation ∇· (c∇n) = f : unless f happens to have
delta functions right on the dV interface, the quantity c∇u must be continuous across the
interface in the n̂ direction. That is, c∇u · n̂ is continuous, not ∇u · n̂. So, before we can
evaluate a surface integral, we need to rewrite things in terms of c∇u · n̂. We can do this,
since

c∇[ln c] · ∇u =
∇
c
· ∇u =

∇c
c2
· c∇u = ∇

(
−1
c

)
· c∇u

in eq. (2). And ∇(−1/c) is also a delta function multiplied by n̂ and the magnitude 1
c1
− 1

c
of the discontinuity, and hence we obtain a corrected SIE:

2

u(x) = u0(x) +
(

1
c1
− 1

)‹
G0(x,x′) [c(x′)∇′u(x′)] · dA′, (4)

c2 dV

which is well-defined since the integrand is now a continuous quantity across the interface.
(And even this is not quite in the form that is used in numerics.)

Like our SIE equations for the case where Ω itself has a boundary, these SIE equations are
solved by parameterizing the surface unknowns via some discretization, and then choosing
the unknowns so that u satisfies appropriate continuity conditions at the interface dV . The
details of this get rather tricky very quickly, but these can yield very efficient computational
methods because they only involve unknowns at interfaces and handle homogeneous regions
(even infinite homogeneous regions) analytically via G0.
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2.2.2 Born approximation

We have written the solution in the form u = u0 + B̂u, where u0 is the solution due to f
ignoring the inhomogeneity, and B̂ is an integral operator giving the “scattered” portion of
the solution B̂u due to the inhomogeneity. We can then formally write:

u = u0 + B̂u = u ˆ ˆ ˆ ˆ2 ˆ ˆ2( 0 +B)(u0 +Bu) = u0 +Bu0 +B (u0 +Bu0 +B u)
∞

= · · · =
∑

B̂k u0,
k=0

which is called a “Born–Dyson” series/expansion (sometimes omitting one name or the
other). Equiv∑alently, (1 implies B̂− B̂)u = u0 u = (1 − )−1u0, and the Taylor series for
(1 ˆ−B) ˆ−1 is k B

k.
What does this represent physically? u0 is the “incident” portion of the solution, before

scattering off the inhomogeneity. B̂u0 is the portion of the solution where this “incident”
solution has scattered once off the inhomogenity, producing a scattered solution

B̂u0 =
ˆ

G0(x,x′)∇′ ln c(x′)
Ω

· ∇′u0(x′)dnx′.

But of course, this portion of the solution also scatters off of the inhomogeneity, producing
a portion of the solution representing incident solutions that have scattered twice:

B̂2u0 =
ˆ

G0(x,x′)∇′ ln c(x′) · ∇′
[ˆ

G0(x′,x′′)∇′′ ln c(x′′) · ∇′′u0(x′′)dnx′′
Ω Ω

]
dnx′,

i.e. a u0 at x′′ produces a source term due to ∇′′c, which “travels” from x′′ to x′ via
G0(x′,x′′), then produces a source at x′ due to ∇′c, then “travels” from x′ to x via G0(x,x′),
and of course this must be integrated over all possible scattering points x′ and x′′. Then
B̂3u0 represents things scattering three times, and so on.2

Now, suppose we have a system that is nearly homogeneous. e.g. ∇c is small. Then one
might expect that the scattered portion B̂u of the solution to be small. In this case, we may
be able to approximate this series by keeping only the first two terms—if scattering once
has small amplitude, then scattering twice should have even smaller amplitude. (e.g. if ∇c
is small, this could be thought of as expanding as a power series in ˆ∇c, since Bk ∼ |∇c|k.)
This is the Born approximation:

u(x) ≈ u0(x) + B̂u0,

and is an extremely useful way to think about nearly homogeneous problems.

3 Example: Inhomogeneity in a small volume
Suppose we are solving −∇ · (c∇u) = f in Ω = R3 with a point source f(x) = δ(x − x0)
at x0. Furthermore, suppose that c(x) is piecewise-constant as in figure 1, with c(x) = c2
everywhere except in a volume V , centered at x1, where c(x) = c1. Now, suppose that we
want the solution u(x), but are far from V : both the source point x0 and the desired point
x are far from V , with |x1−x0| and |x1−x| both much bigger than the diameter of V . This
is shown schematically in figure 2. In this case, we should expect the effect of the “scattered”

2In quantum mechanics, this kind of series of events is sometimes represented graphically by the notation
of “Feynman diagrams,” and can be generalized to nonlinear problems and other effectivei inhomogeneities.
In that context, this process of summing all possible scattering sequences is sometimes mysteriously described
as a “particle exploring all possible paths between two points,” but is really just a consequence of particles
being described by PDEs (Schrödinger’s equation, in single-particle quantum mechanics), rather than ODEs.
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Figure 2: Schematic of problem with an inhomogeneity in a small volume V (centered at
x1): we have a source at x0 and want the solution at x, with both x0 and x much farther
from x1 than the diameter of V .

solution from V to be small at x, and a Born approximation should apply. Furthermore,
we will assume c1 ≈ c2 (though not exactly equal!), so that we can neglect the effect of
the discontinuity in ∇u mentioned after equation (3) above (which greatly complicates the
application of any Born-like approximation in this problem because it would prevent us from
using u ≈ u0 in V ).3

In this case,
1

u0(x) = G0(x,x0)/c(x0) = ,
4πc2|x− x0|

so in the Born approximation we write:

u(x) ≈ u0(x) + B̂u0,

where the scattered part of the solution, applying the SIE form (4) [valid when c1 ≈ c2], is

B̂u0 = ln(c2/c1)
‹

G0(x,x′)∇′u0(x′) · dA′
dV

= ln(c 3
2/c1)

˚
∇′ · [G0(x,x′)∇′u0(x′)] d x′

V

= ln(c2/c1)
˚

V

where in the second line we applied the

[
�∇′G0(x,x′) · ∇′u0(x′) +G ∇�20�

′ u0 d3x′,

divergence theorem, and in the third

]
line the product

rule led to a ∇2u0 term, where ∇2u0 = −δ(x− x0) is zero in V (since x0 is outside of V ).
Now, since V is small compared to the distance from x and x0, the distances |x′−x| and

|x′−x0| hardly change for any x′ ∈ V , and so the ∇′G0 and ∇′u0 terms are approximately
constant in this integral and we can just pull them out, giving the approximation:

B̂u0 ≈ ln(c2/c1) ∇′G0(x,x′) · ∇′u0(x′)|x′=x1
volume(V ).

We can compute these gradients explicitly:

1∇′
|x′ − y|

= − x′ − y
,

|x′ − y|3

and hence:
1

u(x) ≈
4πc2|x− x0|

+ ln(c2/c1)
(x1 − x) (x

4π|x1 − x|3
· 1 − x0)

4πc2|x1 − x0|3
volume(V ). (5)

3It turns out that many people get this wrong in electromagnetism for cases when c1 and c2 are very
different, as discussed in my paper on a closely related subject, “Roughness losses and volume-current
methods in photonic-crystal waveguides,” Appl. Phys. B 81, 238–293 (2005): http://math.mit.edu/
~stevenj/papers/JohnsonPo05.pdf
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Notice that the amplitude of the scattered term vanishes as volume(V ) → 0, as expected.
Notice that it also depends on the sign of (x1 − x) · (x1 − x0). Why is that? What does a
∇′G0 source “mean,” physically?

3.1 Dipole sources
Consider the following problem in Ω = R3, requiring as usual that solutions vanish at ∞:

−∇2Dp(x,x′) = −p · ∇δ(x− x′) = +p · ∇′δ(x− x′).

This is like the Green’s function equation, except now we have put the derivative of a delta
function on the right-hand side, with some constant vector p (the “dipole moment”). Recall
what the derivative of a delta function is:

φ(x′ + εp)− φ(x′ − εp)
[−p · ∇δ(x− x′)]{φ} = [δ(x− x′)]{p · ∇φ} = p · ∇φ|x = lim′

ε→0
,

2ε

and hence (similar to pset 5 of 2010 or pset 7 of 2011),

δ(x x′ εp) δ(x x′ + εp)−p · ∇δ(x x′) = lim
− − − −−

ε→0
.

2ε

That is, the derivative of a delta function is a limit of limit of two delta functions of opposite
sign, displaced proportional to p. In 8.02, where delta functions are “point charges,” this is
what you would have called an “electric dipole.”

We can solve for Dp quite easily, because we know the solution G0 to −∇2G0(x,x′) =
δ(x− x′), and ∇ and ∇′ derivatives can be interchanged in their order:

−p · ∇δ(x− x′) = p · ∇′ [δ(x− x′)] = p · ∇′
[
−∇2G0(x,x′)

]
= −∇2 [p · ∇′G0(x,x′)] ,

and hence
x x′

Dp(x,x′) = p · ∇′G0(x,x′) = p
−· .

4π|x− x′|3

In electrostatics, ths would be the potential of a dipole. Note that this falls off as ∼
1/|x− x′|2, whereas G0 falls off as ∼ 1/|x− x′|.

Given this solution, we can now interpret the scattered part of the solution (5) above: a
small inhomogeneity gives an effective dipole source p at x1, where

(x )
p = − ln( 1

c2/c1
− x

) 0 volume(V ).
4π|x1 − x0|3

In electrostatics, for a typical case where V is a small piece of matter in vacuum, c2 < c1,
so p is parallel to x1 − x0. Physically, a positive point charge induces a dipole moment p
pointed away from the charge, because a “+” charge at x0 pushes “+” charges in V away
from it, as shown below.

x0

x1

+

+

+

+

+

+

+

+
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