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Solutions to Problem Set 2 : More on the Heat


Problem


18.303 Linear Partial Differential Equations 

Matthew J. Hancock 

1. Find the Fourier sine and cosine series of 

1 
f (x) = (1 − x) , 0 < x < 1. 

2 

(a) State a theorem which proves convergence of each series in (a). Graph the 

functions to which they converge. 

(b) Show that the Fourier sine series cannot be differentiated termwise (term-

by-term). Show that the Fourier cosine series converges uniformly. 

Solution: The sine series is 

∞

f̂ (x) = Bn sin (nπx) 
n=1 

where 
� 1 � 1 

Bn = 2 f (x) sin (nπx) dx = (1 − x) sin (nπx) dx 
0 0 

� �1 − (1 − x) cos nπx sin nπx 
= 

nπ 
− 

(nπ)2 
x=0 

1 
= 

nπ 

The cosine series is 

∞

f̃ (x) = A0 + An cos (nπx) 
n=1 

where 
� 1 1 

� 1 1 
A0 = f (x) dx = (1 − x) dx = 

2 0 40 

1 
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Figure 1: Sine series of f(x). 
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Figure 2: Cosine series of f(x). 

� 1 � 1 

An = 2 f (x) cos (nπx) dx = (1 − x) cos (nπx) dx 
0	 0 

�	 �1 − (1 − x) sin nπx cos nπx 
= 

nπ 
− 

(nπ)2 
x=0 

cos nπ 1 −
= 2(nπ)

Thus A2n = 0 and A2n−1 = 2/ (2n − 1)2 π2 . 

Both the sine and cosine series of f (x) converge on the closed interval 

[0, 1] since f (x) is piecewise continuous on 0 ≤ x ≤ 1 and continuous on 

0 < x < 1, as required by the theorem in the notes. 

The sine series is the odd periodic extension of f (x), it is even, 2-periodic 

and discontinuous. The sine series is plotted in Figure 1. 

The cosine series is the even periodic extension of f (x), it is even, 2­

periodic and continuous. The cosine series is plotted in Figure 2. 

Differentiating f (x) gives 
df 1 

= 
dx 

−
2 

Differentiating the sine series f̂ (x) term-by-term gives 

df̂ �

∞

= cos (nπx)
dx 

n=1 
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This series does not converge because the summands do not approach zero 

as n → ∞, for any x. For a series an to converge, the n’th summand n 

an must approach zero as n → ∞. An alternative method to show this 

series does not converge is to choose a single x where the series does not 

converge. Consider x = 1/2, then 

�

� nπ � 

∞
df̂ 1 

∞ ∞

= cos = cos (mπ) = (−1)m 

dx 2 2 
n=1 ,m=1 ,m=1 

where we let m = 2n. The partial sums 

M 
� 0, M even 

(−1)m = 
1, M odd 

,m=1 
−

do not converge, and hence the series at x = 1/2 does not converge. In 

particular, the term-by-term differentiated sine series does not converge, 

and hence the since series of f (x), i.e. f̂ (x) cannot be differentiated term-

by-term. 

[Optional] To show the cosine series f̃ (x) converges uniformly, we note 

that 

� 

∞
� 

∞

� 
An cos (nπx)

� 
An cos (nπx)

� � 

≤ | |
n=1 n=1 

� � 2 
∞∞ ∞

2 � 1 
An = 

π2 m2
≤ 

n=1 

| |
n=1 

(2n − 1)2 π2 
≤ 

m=1 

1We know ∞ converges from our class notes, and hence the cosine 2m=1 m

series f̃ (x) converges uniformly. This is actually called the Boltzano-

Weirstrass M-Test. 

2. Prove uniqueness for Problem 4 on Assignment 1, 

∂u ∂2u ∂u 
= ; (0, t) = 0 = u (1, t) ; u (x, 0) = f (x)

∂t ∂x2 ∂x


where t > 0, 0 ≤ x ≤ 1 and f is a piecewise smooth function on [0, 1].


Solution: Take two solutions u1, u2 (twice continuously differentiable, etc). 

Let 

v (x, t) = u1 (x, t) − u2 (x, t) 

From the PDE for u, 

vt = (u1 − u2)t = u1t − u2t = u1xx − u2xx = (u1 − u2)xx = vxx 

3 



From the BCs for u, 

∂v ∂u1 ∂u2
(0, t) = (0, t) − (0, t) = 0 − 0 = 0 

∂x ∂x ∂x 
v (1, t) = u1 (1, t) − u2 (1, t) = 0 − 0 = 0 

From the IC for u, 

v (x, 0) = u1 (x, 0) − u2 (x, 0) = f (x) − f (x) = 0 

To summarize, the problem for v (x, t) is 

vt = vxx (1) 

vx (0, t) = 0 = v (1, t) (2) 

v (x, 0) = 0 (3) 

We now define the mean square of v, 

� 1 � 1 
2V̄ (t) = v (x, t) dx = (u1 (x, t) − u2 (x, t))2 dx 

0 0 

¯ ¯Since the integrand is a non-negative function, then so must be V (t), i.e. V (t) ≥ 
0. At t = 0, we use the IC (3) to obtain 

� 1 � 1 

V̄ (0) = v 2 (x, 0) dx = 0dx = 0, 
0 0 

¯We now show V (t) is non-increasing: 

� 1 � 1¯dV 
� 1 d � 2 

� 

= v (x, 0) dx = 2vvtdx = 2vvxxdx (4) 
dt 0 dt 0 0 

The last step follows from the PDE (1). Integrating (4) by parts yields 

¯dV 1 

� 1 

= 2 (vvx)x=0 − 2 v 2dx (5) 
dt 0 

x 

From the BCs (2) on v (x, t), we note that vx = 0 at x = 0 and v = 0 at x = 1, 

hence vvx = 0 at both x = 0 and 1. Hence (5) becomes 

¯dV 
� 1

2 = v dx ≤ 0 
dt 

−2 
0 

x 

2 ¯since the integrand (vx) is non-negative. Thus, V (t) starts at 0 (at t = 0), is 
¯non-negative, and is non-increasing. Hence V (t) = 0 for all t ≥ 0. Thus 

� 1 
2¯0 = V (t) = (v (x, t)) dx 

0 
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For any given time t, since (v (x, t))2 is non-negative and continuous in x, then 

the fact the integral is zero implies v (x, t) = 0 for all x. Thus 

0 = v (x, t) = u1 (x, t) − u2 (x, t) 

for all x, and for all time t. Thus u1 = u2 and the solution is unique. 

3. Recall Problem 3 on Assignment 1, 

∂u ∂2u ∂u ∂u 
= ; (0, t) = 0 = (1, t) ; u (x, 0) = f (x)

∂t ∂x2 ∂x ∂x 

where t > 0, 0 ≤ x ≤ 1 and f is a piecewise smooth function on [0, 1]. Prove 

that the average temperature 
� 1 

ū (t) = u (x, t) dx 
0 

is a constant for any solution of this problem. Why is this reasonable physically? 

Use your solution to Problem 3 (you don’t have to re-derive it) to show that 

¯ u is the constant average temperature. limt→∞ u (x, t) = u, where ¯

Solution: To show something is constant, we want to show the derivative in 

time is zero. Thus, differentiating in time, we have 

d¯
� 1 � 1 u du 

� 1 

= dx = utdx = uxxdx (6) 
dt 0 dt 0 0 

The last step follows from the PDE for u. Integrating (6) by parts yields 

dū 1 = (ux) = ux (1, t) − ux (0, t) = 0 
dt x=0 

We used the BCs for u in the last step. Thus 
� 1 � 1 

ū = const = u (x, 0) dx = f (x) dx 
0 0 

This is physically reasonable since in this case the rod is completely insulated, 

so the total energy is conserved. Thus, despite the temperature, and hence 

energy, being distributed in various ways along the rod, the mean temp or total 

energy is always the same. Recall from Problem 3 on Assignment 1 that 

lim u (x, t) = A0 
t→∞ 

for some constant A0. Thus as t → ∞, the temperature becomes constant 

along the rod. But we just showed that the mean temp of the rod is always ū 

(a const). Hence 
� 1 

¯A0 = u = f (x) dx 
0 

5 



4. A rod of homogeneous radioactive material lies along the x-axis, 0 ≤ x ≤ l. The 

neutron density n (x, t) at position x and time t is affected by two processes ­

fission and diffusion. Conservation of neutrons leads to the PDE, 

∂n ∂2n 
= D + kn 

∂t ∂x2 

where D is a diffusion coefficient and k is a fission constant, with D > 0, k > 0. 

Suppose that n = 0 at the ends of the rod. Show that the rod will explode 

if and only if (n → ∞) 
π2D


k > .

l2 

Solution: Be careful that this problem is posed in dimensional variables. You 

can either non-dimensionalize it, or (easier) just work in dimensional variables. 

We want to find the time dependence and determine a relationship for blowup. 

We separate variables as 

n (x, t) = X (x) T (t) (7) 

and substitute this into the PDE (don’t forget the constant term): 

X (x) T ′ (t) = DX ′′ (x) T (t) + kX (x) T (t) 

Diving by DX (x) T (t) yields 

1 T ′ (t) X ′′ (x) k 
= + 

D T (t) X (x) D 

For convenience we move the k/D term to the left: 

k 1 T ′ (t) X ′′ (x)
+ =−

D D T (t) X (x) 

By the argument before, the left side depends only on time t, the right only on 

x, and hence both sides must be a constant: 

k 1 T ′ (t) X ′′ (x)
+ = =−

D D T (t) X (x) 
−λ 

This gives two ODEs:

T ′ (t)


T (t)
= −Dλ + k (8) 

X ′′ (x) + λX (x) = 0 (9) 

From (8), we need to show −Dλ + k > 0 for blowup. But first, we have to find 

λ by solving the ODE (9) and imposing the BCs. Introducing () into the BCs 

gives 

0 = n (0, t) = X (0) T (t) , 0 = n (l, t) = X (l) T (t) 

6 



For non-trivial solutions, we must have T (t) nonzero for some t, in which case 

X (0) = X (1) = 0. Thus the Sturm-Liouville problem for X (x) is 

X ′′ (x) + λX (x) = 0; X (0) = 0 = X (l) 

A similar argument to the one in class shows that this has eigenfunctions 

Xn (x) = sin (nπx/l) and eigenvalues λn = n2π2/l2 . The eigenfunctions are 

bounded, and will not contribute to blowup. The eigenvalues, however, control 

the behaviour of T (t). In particular, the associated solutions for T (t) are given 

by (8), 
T ′ (t) D 2π2 = n + k 
T (t) 

−
l2


For blowup, we must have


Dπ2 
2 −n

l2 
+ k > 0


for some n. In other words, blowup happens if and only if


Dπ2


k > n 2 
l2 

for some n. But Dπ2 < Dn2π2 for n > 1, so blowup happens if and only if 

Dπ2 

k > 
l2 

5. Consider the inhomogeneous generalized heat equation 

∂u ∂2u ∂u 
= + b + cu + g (x, t) (10) 

∂t ∂x2 ∂x


where b, c are constants.


(a) Show that if u is a solution to (10), then 

v (x, t) = e αx+βt u (x, t) (11) 

satisfies the standard heat equation 

∂v ∂2v 
= + h (x, t)

∂t ∂x2 

for suitable choices of the constants α, β and function h (x, t). In this way,


more complicated heat problems can be simplified.


Solution: Re-writing (11) for u (x, t) gives


e−αx−βt u (x, t) = v (x, t) (12) 

7 
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Note that 

ut = e−αx−βt (−βv + vt) 

ux = e−αx−βt (−αv + vx) (13) 

uxx = e−αx−βt α2 v − 2αvx + vxx 

� 

Substituting into the generalized heat equation (10) gives 

αx+βt vt = vxx + (b − 2α) vx + α2 + β − αb + c 
� 

v + ge (14) 

To get rid of the vx and v terms, we choose 

= 0 

α2 + β − αb + c = 0 

b − 2α 

Solving for α, β gives 

α = b/2 
� b2 

β = − α2 − αb + c 
� 

= c 
4 
−


Choosing

αx+βt h (x, t) = g (x, t) e αx+βt = g (x, t) e 

and substituting for α and β in the PDE (14) gives the standard heat 

equation 
∂v ∂2v 

= + h (x, t) . 
∂t ∂x2 

(b) Now assume b = c = 0 and g = g0 is a constant. Suppose the BCs and IC 

are all homogeneous, 

u (0, t) = 0 = u (1, t) ; u (x, 0) = 0. 

Find the equilibrium solution uE (x) to (10) and, without using your re­

sults in part (a), transform (10) to a standard homogeneous problem for a 

temperature function w (x, t). 

Solution: The original PDE (10) becomes 

∂u ∂2u 
= + g0

∂t ∂x2


The equilibrium solution u (x, t) = uE (x) satisfies


0 = u′′ + g0E 

8 



Solving for uE gives 
2x

uE = −g0 + Ax + B 
2 

The BCs on uE are 

uE (0) = 0 = uE (1) 

Imposing the BCs on our general solution and solving for A, B yields 

0 = uE (0) = B 
1 

0 = uE (1) = −g0 + A 
2


Thus A = g0/2 and B = 0, and


g0

uE (x) = x (1 − x)

2


We now transform our PDE. Let


w (x, t) = u (x, t) − uE (x)


Note that


= ut 

wxx = uxx − u′′ = uxx + g0 

wt 

E 

Thus, 

wt − wxx = ut − uxx − g0 = 0 

The BCs for w are


w (0, t) = u (0, t) − uE (0) = 0


w (1, t) = u (1, t) − uE (1) = 0


Thus w (x, t) satisfies the basic heat problem,


wt = wxx, 0 < x < 1, t > 0


w (0, t) = 0 = w (1, t) , t > 0

g0


w (x, 0) = u (x, 0) − uE (x) = x (1 − x) , 0 < x < 1.−
2 

(c) Continuing from part (b), show that for large t, 

u (x, t) ≈ uE (x) + Ce−π2t sin πx 

where C is some constant. Find C and comment on the physical signifi­

cance of its sign. Illustrate the solution qualitatively by sketching typical 

9




� 

spatial temperature profiles with t = constant and the temperature time 

profile at x = 1/2. 

Solution: The solution for w (x, t) is, from class, 

∞
t w (x, t) = Bn sin (nπx) e−n2π2

n=1 

and is well approximated by the first term, for t ≥ 1/π2 , 

t w (x, t) ≈ B1 sin (πx) e−π2

where 
� 1 � � g0 4 

B1 = 2 x (1 − x) sin (πx) dx = 
π3 

g0 
0 

−
2 

− 

Thus for t ≥ 1/π2 , 

1 
u (x, t) = uE (x) + w (x, t) ≈ g0x (1 − x) −

π

4 
3 
g0e

−π2t sin πx 
2

So C = −4g0/π
3 . The sign of C is opposite that of g0, since the transient 

term is changing the opposite way the rod is. If g0 > 0, the heat source 

increases the rod temp over time, so the transient term, whose magnitude 

gets smaller as time increases, should be negative. 

[Optional] In general, 

� 1 � � g0
Bn = 2 x (1 − x) sin (nπx) dx −

20 
g0 

= 
3π3 

(2 cos πn + πn sin πn − 2) 
n

= 
n

2
3

g

π
0

3 
((−1)n − 1) 

Thus B2n = 0 and 
4g0 

= 3 π3 
B2n−1 −

(2n − 1)

At x = 1/2, we have 

� � � � � � 

1 1 1 
u , t = uE + w , t 

2 2 2

= 
1 
g0 

1 
� 

1 − 1 
� 

+ 
∞

� 

B2n−1 sin 
� 

(2n − 1) 
π� 

e−(2n−1)2π2t 

2 2 2 2 
n=1 

� (−1)n+1 g0 4g0 
∞

e−(2n−1)2π2t = 38 
− 

π3 (2n − 1)
n=1 

10 
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Figure 3: Plots of u(x, t0) for t0 = 0, 0.05, 0.15 and of uE(x). 

For plots, note that uE (x) is an upside-down parabola whose vertex is at 

(1/2,−g0/8) in the ux-plane. Also, 

� π�1 1 4g0 
e−π2 tg0 4g0 

e−π2

u , t uE 
t sin = . 

2
≈

2 
− 

π3 2 8 
− 

π3 

The plots are given in Figures 3 and 4. 

6. Consider the inhomogeneous heat problem 

∂u ∂2u 
= ; u (0, t) = a (t) , u (1, t) = b (t) ; u (x, 0) = f (x) (15) 

∂t ∂x2 

with inhomogeneous boundary conditions, where a (t) and b (t) are given con­

tinuous functions of time. 

(a) Show that (15) has at most one solution. 

Solution: The uniqueness proof is very similar to that in Problem 2. Take 

two solutions u1, u2 and let 

v (x, t) = u1 (x, t) − u2 (x, t) 

As before, from the PDE for u, we have


vt =
 vxx 

11 
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Figure 4: Plot of u(1/2, t). 

From the BCs for u, 

v (0, t) = u1 (0, t) − u2 (0, t) = a (t) − a (t) = 0 

v (1, t) = u1 (1, t) − u2 (1, t) = b (t) − b (t) = 0


From the IC for u,


v (x, 0) = u1 (x, 0) − u2 (x, 0) = f (x) − f (x) = 0


To summarize, the problem for v (x, t) is


vt = vxx 

v (0, t) = 0 = v (1, t) 

v (x, 0) = 0 

We considered this case in class (I expect you to show the steps), and 

showed v (x, t) = 0 = u1 (x, t) − u2 (x, t). Thus u1 (x, t) = u2 (x, t) and the 

solution is unique. 

(b) Transform (15) into a standard problem (i.e. one with homogeneous BCs) 

in terms of the unknown function v (x, t). 

Solution: There are several ways this can be done. We have a problem in­

volving a homogeneous PDE and inhomogeneous BCs. We want to change 

this to a problem with an inhomogeneous PDE and homogeneous BCs. 

12




The reason you might want to do this is that many over-the-counter heat 

equation solvers solve PDEs like ut = uxx + h (x, t) (the standard Heat 

Problem), but assume zero BCs. We need to subtract a function from 

u (x, t) that equals a (t) at x = 0 and b (t) at x = 1. For each t, one such 

function is simply a line (in x) from a (t) to b (t), 

l (x, t) = a (t) + (b (t) − a (t)) x 

Let 

w (x, t) = u (x, t) − l (x, t) = u (x, t) − (a (t) + (b (t) − a (t)) x) 

Notice that the BCs for w (x, t) are now homogeneous, 

w (0, t) = u (0, t) − a (t) = 0 

w (1, t) = u (1, t) − b (t) = 0 

Since what we subtracted from u (x, t) is linear in x, it disappears in wxx 

(check for yourself): 

wxx = uxx − lxx = uxx (16) 

Also, 

wt = ut − lt 

= ut − a′ (t) − (b′ (t) − a′ (t)) x 

= uxx − a′ (t) − (b′ (t) − a′ (t)) x 

= wxx − a′ (t) − (b′ (t) − a′ (t)) x 

where we used the PDE for u to get the second last step, and (16) to obtain 

the last step. Thus the PDE for w (x, t) is now inhomogeneous, 

wt = wxx + h (x, t) 

where 

h (x, t) = −a′ (t) − (b′ (t) − a′ (t)) x 

(c) Now assume a (t), b (t) are constants and f (x) = 0. Find the equilibrium 

solution uE (x) to (15).


Solution: If a (t) = a and b (t) = b are constants, we go back to the orginal


problem (15) for u (x, t) and find the equilibrium solution u (x, t) = uE (x):


u′′ = 0; uE (0) = a, uE (1) = bE 

Integrating twice and imposing the BCs gives


uE (x) = a + (b − a) x


13 
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(d) Continuing from part (c), show that for large t, 

u (x, t) ≈ uE (x) + Ce−π2t sin πx 

where C is some constant. Find C. Hint: use the approximate solution


for the homogeneous heat problem we considered in class.


Solution: As in 5(c), we let w (x, t) = u (x, t) − uE (x) and obtain


E = uxx = ut = wtwxx = uxx − u′′ 

Thus,


wt =
 wxx 

The BCs for w are 

w (0, t) = w (0, t) − uE (0) = 0 

w (1, t) = w (1, t) − uE (1) = 0 

Thus w (x, t) satisfies the basic heat problem, 

wt = wxx, 0 < x < 1, t > 0 

w (0, t) = 0 = w (1, t) , t > 0 

w (x, 0) = u (x, 0) − uE (x) = − (a + (b − a) x) , 0 < x < 1. 

From class, the solution is 

∞
t w (x, t) = Bn sin (nπx) e−n2π2

n=1 

and is well approximated by the first term, for t ≥ 1/π2 , 

t w (x, t) ≈ B1 sin (πx) e−π2

where 
� 1 2 

B1 = −2 (a + (b − a) x) sin (πx) dx = (a + b)−
π0 

Thus for t ≥ 1/π2 , 

2 
u (x, t) = uE (x) + w (x, t) ≈ a + (b − a) x − (a + b) e−π2t sin πx 

π


So C = −2 (a + b) /π.


14 
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7. Fourier’s Ring. Consider a slender homogeneous ring which is insulated laterally. 

Let x denote the distance along the ring and let l be the circumference of the 

ring. From physics (see Haberman 2.4.2) , the temperature u (x, t) satisfies, in §
dimensionless form, 

ut = uxx; 0 < x < 2, t > 0 (17) 

u (x + 2, t) = u (x, t) ; t > 0 

u (x, 0) = f (x) 0 < x < 2. 

The boundary condition (middle equation) merely states that the temperature 

is continuous as you go around the ring. 

(a) Use separation of variables and Fourier Series to obtain the solution to 

(17): 

∞
t u (x, t) = A0 + e−n2π2

(An cos (nπx) + Bn sin (nπx)) 
n=1 

Give formulae for the coefficients An, Bn in terms of f (x).


Solution: As before, we separate variables u (x, t) = X (x) T (t) in the


PDE to obtain

T ′ X ′′ 

= 
T X 

Since the left side depends only on t and the right on x, both must equal 

a constant: 
T ′ X ′′ 

= = 
T X 

−λ 

The BCs imply


X (x + 2) = X (x)


The problem for X (x) is 

X ′′ + λX = 0; X (x + 2) = X (x) 

We first try λ = 0. This implies X (x) = A + Bx, and the periodicity 

condition X (x + 2) = X (x) implies B = 0. Thus λ = 0 and X0 (x) = A0 

works. 

For λ < 0, we have 

√
−λxX (x) = c1e 

√
−λx + c2e

−

and periodicity implies 

c1e 
√
−λx + c2e

−
√
−λx 

√
−λ(x+2) + 

√
−λ(x+2) = c1e c2e

−

15 
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Rearranging yields 

c1 1 − e 2
√
−λ e 2

√
−λx = −c2 1 − e−2

√
−λ 

The right hand side is a constant. However, since λ < 0, then as x changes, 

so does e2
√
−λx . Thus the left hand side will change - unless the coefficients 

are both zero! Thus, 

c1 1 − e 2
√
−λ = 0 = c2 1 − e−2

√
−λ 

But since λ < 0, the terms 1− e±2
√
−λ are not zero, and hence c1 = c2 = 0


(the trivial solution). Thus we discard λ < 0.


The last case is λ > 0:


i
√

λx X (x) = c1e + c2e
−i

√
λx 

and, similarly to the case λ < 0, periodicity implies 

2i
√

λ 2i
√

λx c1 1 − e e = −c2 1 − e−2i
√

λ 

Since e2i
√

λx changes as x varies, and the right side is constant, then the 

coefficints must be zero. To have a non-trivial solution, c1 and c2 cannot 

both be zero, and hence either 

1 − e 2i
√

λ = 0 or 1 − e−2i
√

λ = 0 

Note that the only way e2i
√

λ (or e−2i
√

λ) can be 1 is if 2
√

λ is a multiple 

of 2π. Thus 

2
√

λ = 2nπ 

Solving for λ gives the eigenvalues 

λn = n 2π2 

Note: there are several ways to find λn - you could use the ”useful result” 

from class (we’ve actually just gone through an alternate proof of it), 

or imposed X (0) = X (2) and X ′ (0) = X ′ (2) and solved two algebraic 

equations. We could have also combined the cases λ < 0 and λ > 0, but I 

wanted to separate them for clarity. Use the method you find simplest. 

We can now write X (x) in terms of real valued functions, using the rule 

e i
√

λx = cos 
√

λx + i sin 
√

λx = cos nπx + i sin 
√

λx, 

16 
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we have 

Xn (x) = An cos (nπx) + Bn sin (nπx) 

tfor some constants An, Bn. The solutions for T (t) are Tn (t) = e−n2π2

. 

Summing over all n (don’t forget u0 (x, t) = A0e
0 = A0) gives 

∞
t u (x, t) = A0 + (An cos (nπx) + Bn sin (nπx)) e−n2π2

(18) 
n=1 

The An’s and Bn’s are found by imposing the IC. 

At t = 0, we impose the IC to obtain 

∞

f (x) = u (x, 0) = A0 + (An cos (nπx) + Bn sin (nπx)) (19) 
n=1 

We now need to derive orthogonality conditions for cos (nπx) and sin (nπx): 

� 2 

cos (nπx) cos (mπx) dx 
0 

1 
� 2 1 

� 2


=
 cos ((m − n) πx) dx + cos ((m + n) πx) dx 
2 0 2 0 

1 
� 2


=
 cos ((m − n) πx) dx 
2 0


= δmn


where δmn = 1 if m = n and 0 if m = n is the Kronecker delta. Similarly, 

� 2 

cos (nπx) sin (mπx) dx = 0 
0


� 2


sin (nπx) sin (mπx) dx = δmn 

0 

Integrating (19) from x = 0 to 2 gives 

� 2 � 2 
�

� 
� 2 �

� 2∞

f (x) dx = A0 dx + An cos (nπx) dx + Bn sin (nπx) dx 
0 0 n=1 0 0 

∞

= 2A0 + (An0 + Bn0) = 2A0


n=1


17
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Multiplying (19) by cos (mπx) and integrating from x = 0 to 2 yields 

� 2 

f (x) cos (mπx) dx 
0 

� 2 

= A0 cos (mπx) dx

0


�
� 2 �

� 2∞

+ An cos (nπx) cos (mπx) dx + Bn sin (nπx) cos (mπx) dx 
0n=1 0 

∞

= 0 + (Anδmn + Bn0)

n=1


= Am


Multiplying (19) by sin (mπx) and integrating from x = 0 to 2 yields 

� 2 

f (x) sin (mπx) dx 
0 

� 2 

= A0 sin (mπx) dx

0


�
� 2 �

� 2∞

+ An cos (nπx) sin (mπx) dx + Bn sin (nπx) sin (mπx) dx 
0 n=1 0 

∞

= 0 + (An0 + Bnδmn)

n=1


= Bm


To summarize, the Fourier coefficients are given by


1 
� 2


A0 =
 f (x) dx = avg of f (x) over [0, 2]
2 0 

and for m > 0, 

� 2 � 2 

Am = f (x) cos (mπx) dx, Bm = f (x) sin (mπx) dx. 
0 0 

(b) Prove that (17) has at most one solution. 

Solution: The uniqueness proof is similar to that in Problem 2. Take two 

solutions u1, u2 and let 

v (x, t) = u1 (x, t) − u2 (x, t) 

As before, from the PDE for u, we have 

vt = vxx 

18 



From the BCs for u, 

v (x + 2, t) = u1 (x + 2, t) − u2 (x + 2, t) = u1 (x, t) − u2 (x, t) = v (x, t) 

From the IC for u, 

v (x, 0) = u1 (x, 0) − u2 (x, 0) = f (x) − f (x) = 0 

To summarize, the problem for v (x, t) is 

vt = vxx 

v (x + 2, t) = v (x, t) 

v (x, 0) = 0 

This problem is the same as the one for u (x, t) except f (x) = 0. You may 

be tempted to plug f (x) = 0 into the equations above for An and Bn and 

then claim v (x, t) = 0. The problem is that you can’t use the solution we 

found using separation of variables, because we are trying to prove there 

aren’t other solution methods that give different answers. So we proceed 

as in class and problem 2. Define a function 

� 2 � 2 

Δ (t) = v 2 (x, t) dx = (u1 (x, t) − u2 (x, t))2 dx 
0 0 

Note that 
� 2 

Δ (0) = v 2 (x, 0) dx = 0 
0 

and since the integrand is non-negative, 

Δ (t) ≥ 0. 

As usual, we now show that Δ (t) is non-increasing, 

� 2 � 2dΔ 
� 2

2 = 2vvtdx = 2vvxxdx = 2 (vvx)x=0 − 2 v 2dx 
dt 0 

x 
0 0 

where we used the PDE for the 2nd step and integration by parts for the 

3rd step. Note that since v and vx are periodic (since v (x + 2, t) = v (x, t) 

holds for all x we can differentiate it in x to obtain vx (x + 2, t) = vx (x, t)), 

hence 

(vvx)
2 = v (2, t) vx (2, t) − v (0, t) vx (0, t)x=0 

= v (0, t) vx (0, t) − v (0, t) vx (0, t) 

= 0 
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Thus 
dΔ 

� 2
2 = v dx ≤ 0 

dt 
−2 

0 
x

Thus Δ (t) is non-negative, starts at zero, and is non-increasing. Thus 

Δ (t) = 0 for all time, and since the integrand v2 (x, t) is non-negative 

and continuous in x, then v (x, t) = 0 for all x, and any time t. Hence 

u1 (x, t) = u2 (x, t) for all x and t. 

8. Determine which of the following operators are linear: 

Take two continuously differentiable functions v and w, and a real number k (a 

constant). 

(a) L (u) = ut + x2uxx 

Solution: Check addition rule:


L (v + w) = (v + w)t + x 2 (v +
 w)xx 

2 = vt + wt + x (vxx + wxx) 

2 2 = vt + x vxx + wt + x wxx 

= L (v) + L (w) 

Thus L satisfies the addition rule. Check scalar multiplication: 

L (kv) = (kv)t + x 2 (kv)xx 

= kvt + x 2kvxx 

= k vt + x 2 vxx 

� 

= kL (v) 

Thus L satisfies the scalar multiplication rule. Thus L is a linear operator. 

(b) L (u) = uuxx


Solution: Check scalar multiplication:


L (kv) = (kv) (kv)xx = k2 vvxx = k2L (v) 

Thus L does NOT satisfy the scalar multiplication rule and is not linear! 
2

(c) L (u) = ex tuxx


Solution: Check addition rule:


2

L (v + w) = e x t (v + w)xx 

2x t = e (vxx + wxx) 
2 2x t = e vxx + e x t wxx 

= L (v) + L (w) 
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Thus L satisfies the addition rule. Check scalar multiplication: 

2 2tL (kv) = e x t (kv)xx = ke x vxx = kL (v) 

Thus L satisfies the scalar multiplication rule. Thus L is a linear operator. 
� 1

(d) L (u) = uxx − ut (y, t) dy 
0 

Solution: Check addition rule: 
� 1 

L (v + w) = (v + w)xx − (v (y, t) + w (y, t))t dy 
0 

� 1 

= vxx + wxx − (vt (y, t) + wt (y, t)) dy 
0 

� 1 � 1 

= vxx + wxx − vt (y, t) dy − wt (y, t) dy 
0 0 

� 1 � 1 

= vxx − vt (y, t) dy + wxx − wt (y, t) dy 
0 0 

= L (v) + L (w) 

Thus L satisfies the addition rule. Check scalar multiplication: 

� 1 

L (kv) = (kv)xx − (kv (y, t))t dy 
0 

� 1 

= kvxx − k vt (y, t) dy 
0 

�
� 1 � 

= k vxx − vt (y, t) dy = kL (v) 
0 

Thus L satisfies the scalar multiplication rule. Thus L is a linear operator. 
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