Solutions to Problems for Infinite Spatial Domains
and the Fourier Transform
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Fall 2006

1 Problem 1

Do problem 10.4.3 in Haberman (p 469). The answer for (a) is in the back - please
show how to get that answer. After doing parts (a), (b), solve the same PDE on the
semi-infinite rod {# > 0} with an insulated BC at x = 0:

0

8_7; =0 at x =0
and the IC

u(x,0)=06(z—1), x> 0.

We also assume u is bounded as xz — oo.

Solutions: (a) The problem 10.4.3 is to solve the diffusion equation with convec-

tion,
Ou _ pOu, Ou <z< >0
— = k= +c— —00 < T < 00
ot dx?  Ox’ ’ ’
u(xz,0) = f(x), —00 < & < 00.

Define the Fourier Transform as

Flu(z,t)] =U (w,t) = % /OO u(x,t) e dx

— 00

Taking the Fourier Transform of the PDE gives, from our rules in class,

%U(w,t) = —kw’U (w,t) — ciwlU (w,t) = (—kw® — ciw) U (w, )

Integrating gives
U (W, t) = (w) e—kw2t—ciwt

1



Imposing the IC gives

C (W) = U (w,0) = 21”/00 (2,0) g — —/ f(z) e da.
Thus C' (w) = F (w) is the Fourier Transform of f (x). Lastly,
U(w,t) = F (w) e i et
Note the inverse FT’s:

FLUF (W) = f(2), F-1 [e—koﬂt] _ %e—ﬁ/m

To find the inverse FT, we use the convolution theorem to obtain, as in class,

Fi [F (w) e’k‘”Qt] = /_Z %exp <_(x4_kt8) ) ds

We now use the Shifting Theorem (Table on p 468),

Fi [e_i”ﬁG (w)] = / e WG (w) e ™ dw

—00

= / G (w) e @ B+0) gy

= g(z+p)

so that

u(z,t) = F U (w,t)]
= F! |:6—cith (w) e—kw2ti|

< f(s) (z +ct — s)°
e (T )
(b) Consider the IC f (z) = ¢ (x). Substituting f (s) = d (s) gives
oo 2
u(x,t) = /_ \j%exp (—%) ds

To evaluate the integrals, we use the sifting property of the ¢ function:

for a < ¢ < b. Thus
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Figure 1: Sketch of u(x,t) with ¢ = k, for k&t = 0.1 (solid), 1 (dashed) and 2 (dash-
dot).

Plots are given in Figure 1. The convective term cu, moves the peak to the left, as
the lump becomes more spread out (diffuse) due to the diffusion term ku,,.

(c) For the semi-infinite rod, things are different (e.g. see problem 10.5.14). First,
we use the methods of PSet 2, Q5a, to transform the PDE to the basic Heat Equation,

u ([L’, t) _ 6—[oc+(c/2)t]c/2kv ($, t)

so that the PDE for w is transformed to

U = kUge (1)
The initial condition is
v (x,0) = u(z,0) ™ = f () e/ (2)
and the BC is
0= g—z (0,¢) = e~ (/) <—iv (0,t) + % (0, t))
Thus . 9
0= o5V (0,t) + g (0,t) (3)



We extend v (x,t) to the infinite rod —oco < z < 00, and let’s suppose the IC is

v (2,0) = f (z). The solution to the PDE (1) and the IC is, from class,

[ () (z — 5)°
v(:c,t)—/_oo\/mexp<— e )ds

We now have to choose f (z) to satisfy the BC (3). First, compute the following:
* f(s) ( s’ )
v (0,1) = exp| ——— | ds

[ _sf(s) _8_2>
vx(O,t)—/_oo 2kt\/mexp( py ds

Thus

c ov [ f(s) s 52
S (O,t)+a—x(0,t)—/_oo S 47T_kt( c—i—Z) exp( o) ds (4)
So if we define

] (ma) eI <),

T exc/Qk T
@) = { f (@)™, >0,

the integrand in (4) is odd, so that

c ov
—%U (O,t) -+ a_fl,’ (O,t) =0.
Note that f(z) is neither even nor odd, but by choosing it we satisfy the BC (4).
Also, for & > 0, f(z) = f(x)e*/?, which is the IC (2) for v(z,t). Now with
f(x) =6 (x—1), we have

< §(x —1)er/?k x>0,
f (l’) = —zc/2k —c—z/t
—d(—z—1)e = <0,

—cta/t?



and hence
[ S (x — )"
v(z,t) = /Oo\/mexp (— e )ds
B O §(—s—1)e /% —c—s/t (z —s)°
- _/ Akt —c+ s/t eXP <_ 4kt ds

0§ (s —1) e/ (x —s)?
T d
L= )

0 e —sc/2k _ . _ )2
_ _/ d(=s—1)e c—s/t exp (=) s
—oo VAarkt —c+ s/t 4kt
5 (5 —1)es/? (z—s)
+/0 Vi P\ T )
e e/t y _(:c+1)2 ex _(x—1)2
T Vamkt \ ettt P\ T 4kt e W

U(ZE,t) _ 6—[x+(c/2)t]c/2kv (%,t)

e—[x+(c/2)t+1]c/2k c— 1/t (.CC 4 1)2 (.’,U . 1)2
= — eXxp| ———— | +texp| —
Varkt ct+1/t Akt Akt

is the solution of the Heat Equation with Convection on the semi-infinite rod, insu-

Thus

lated at x = 0. Plots are given in Figure 2.

2 Problem 2

Do problem 10.6.4 in Haberman (p 499-500), both (a) and (b). The answer for (a)
is in the back - please show how to get that answer. You may find sections 10.5 and
10.6 in Haberman useful as reference reading.

Solutions: Solve Laplace’s equation on the half plane,
Vu =0, x>0, y >0

subject to the BCs

and either (a)
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Figure 2: Sketch of u(x,t) with ¢ = k, for k&t = 0.1 (solid), 1 (dashed) and 2 (dash-
dot).

or (b)
u(z,0) = f(x)
Since u = 0 along y = 0, we must extend f (x) to be odd,
r - f (l‘) ) x Z 07
f@)_{ —f(=x), x=<0.

We now solve Laplace’s equation on the half plane {y > 0,—c0 < x < oo}, as in §3
of the Notes,

Vi = 0, —00 < T < 00, y >0

=g

(2,0)
0,y) =

=g}

= f(2), —00 < ¥ < 00,
0, y>0

Since the inhomogeneous BC is imposed along the z-axis, we employ the Fourier

Transform in =z,
1 > wx
Flglwn=5- [ glew)eris

C2m )



and define U (w, y) = F [ (z,y)]. As before, we have
F [amc] = _wz‘/f [ﬁ] = _W2U (w>y>7 F [ﬁyy] =)

Hence Laplace’s equation becomes
82

a_yQU (W,y) - WZU (wvy) =0

Solving the ODE and being careful about the fact that w can be positive or negative,
we have
U(w,y) = (w)e ™Y 4 ¢y (w) el

where ¢; (w), ¢z (w) are arbitrary functions. Since the temperature must remain

bounded as y — oo, we must have ¢y (w) = 0. Thus
U (w,y) = e (w) e (5)

(a) Imposing the BC at y = 0 gives

el (@) = %Uw,y)

_F [ﬁa @,m} — FIf (@)

y=0

Thus
€_|w|y

Ulw,y) =F[f ()]

= |wl

Note that the IFT of e~V / (— |w|) is
—|wly 00 o—lwly
F [e } = / ¢ e "“Tdw
- |w| —o0 |w|
-/ < / e—wydy) e
= /(/ e“yei“”dw> dy

= / FH e W] dy

In the text and in section 3 of the notes, we showed that

2y
x? + y?

—lwly 2
-1 |€ Y 2 2
—= :l
d {—!w!} /(Sc2+y2>dy w7

7

F1 [e—lwly] —

Thus




Therefore, applying the Convolution Theorem with F~! [¢; (w)] = f (2) and F~! [e I/ (— |w]|)]

gives

W) = 5 [ T (o)
- %/_oof(s)ln((x—s)Q—l—y d5+—/ f(s)n ((z = 5)° + %) ds
- _i/ f(=s)n ((z — )* + ds+—/ f()n (@ —s)" +y°) ds
- /f )l (@ + )" + ds+—/ f ) ((z =) +y7) ds

(z—s) +¢
= s ln—ds
27 Jo i (z +5)° +y?

(b) Imposing the BC at y = 0 gives
o (@) = U (@,0) = F i (2,0)] = F [ f ()]

Therefore, applying the Convolution Theorem with F~1 [¢; (w)] = f () and F~! [ _|“’|y] =
2y/ (2% + y?) gives

U —i OONS—Qy S
i) =g [ FO)

In both (a) and (b), limiting # > 0 gives the solution to Laplace’s equation on the
quarter plane,
w(z,y) =u(zy), ==0

You don’t have to, but you can rearrange this some more,

_ 0
aey) = 5 [ f<—s>($_f> / PO ot
_ 1/ 2y
o oof(s)(:t+s) / S (z —5)° yds

- %/ooof(s)((ws_)lw +(a:—s)2+y2)d8

:Ahy/“ f(s)
™ Jo ((x+3)?+12) (v —s)* +12)




