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1 2D and 3D Heat Equation 

Ref: Myint-U & Debnath §2.3 – 2.5 

[Nov 2, 2006] 

Consider an arbitrary 3D subregion V of R3 (V ⊆ R3), with temperature u (x, t) 

defined at all points x = (x, y, z) ∈ V . We generalize the ideas of 1-D heat flux to 

find an equation governing u. The heat energy in the subregion is defined as 

� � 
heat energy = cρu dV 

V 

Recall that conservation of energy implies 

rate of change heat energy into V from heat energy generated 
= + 

of heat energy boundaries per unit time in solid per unit time 

We desire the heat flux through the boundary S of the subregion V , which is 

the normal component of the heat flux vector φ, φ n̂, where n̂ is the outward unit · 
normal at the boundary S. Hats on vectors denote a unit vector, n̂ = 1 (length 1). | |
If the heat flux vector φ is directed inward, then φ n̂ < 0 and the outward flow of · 
heat is negative. To compute the total heat energy flowing across the boundaries, 

we sum φ n̂ over the entire closed surface S, denoted by a double integral 
� � 

dS.· 
S 

Therefore, the conservation of energy principle becomes 

d 
� � � � � � � � 

dt V 

cρu dV = − 
S 

φ · n̂ dS + 
V 

QdV (1) 
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1.1 Divergence Theorem (a.k.a. Gauss’s Theorem) 

For any volume V with closed smooth surface S, 

� � � � � 
∇ · A dV = A · n̂ dS 

V S 

where A is any function that is smooth (i.e. continuously differentiable) for x ∈ V . 

Note that � 
∂ ∂ ∂ 

� 
∂ ∂ ∂ 

, ,∇ = 
∂x ∂y ∂z 

= êx 
∂x 

+ êy
∂y 

+ êz 
∂z 

where êx, êy, êz are the unit vectors in the x, y, z directions, respectively. The 

divergence of a vector valued function F = (Fx, Fy, Fz) is 

∂Fx ∂Fy ∂Fz 
.∇ · F = 

∂x 
+ 

∂y 
+ 

∂z 

The Laplacian of a scalar function F is 

∂2F ∂2F ∂2F ∇ 2F = 
∂x2 

+ 
∂y2 

+ 
∂z2 

. 

Applying the Divergence theorem to (1) gives 

d 
� � � � � � � � � 

dt V 

cρu dV = − 
V 

∇ · φ dV + 
V 

QdV 

Since V is independent of time, the integrals can be combined as 

� � � � 
∂u 

� 

cρ 
∂t 

+ ∇ · φ − Q dV = 0 
V 

Since V is an arbitrary subregion of R3 and the integrand is assumed continuous, the 

integrand must be everywhere zero, 

∂u 
cρ 

∂t 
+ ∇ · φ − Q = 0 (2) 

1.2 Fourier’s Law of Heat Conduction 

The 3D generalization of Fourier’s Law of Heat Conduction is 

φ = −K0∇u (3) 

where K0 is called the thermal diffusivity. Substituting (3) into (2) gives 

∂u Q 

∂t 
= κ∇ 2 u + 

cρ 
(4) 
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where κ = K0/ (cρ). This is the 3D Heat Equation. Normalizing as for the 1D case, 

x κ 
x̃ = , t̃ = t, 

l l2 

Eq. (4) becomes (dropping tildes) the non-dimensional Heat Equation, 

∂u 2 

∂t 
= ∇ u + q, (5) 

where q = l2Q/ (κcρ) = l2Q/K0. 

2 2D and 3D Wave equation 

The 1D wave equation can be generalized to a 2D or 3D wave equation, in scaled 

coordinates, 
2 utt = u (6) ∇ 

This models vibrations on a 2D membrane, reflection and refraction of electromagnetic 

(light) and acoustic (sound) waves in air, fluid, or other medium. 

3 Separation of variables in 2D and 3D 

Ref: Guenther & Lee §10.2, Myint-U & Debnath §4.10, 4.11 

We consider simple subregions D ⊆ R3 . We assume the boundary conditions are 

zero, u = 0 on ∂D, where ∂D denotes the closed surface of D (assumed smooth). 

The 3D Heat Problem is 

ut = ∇ 2 u, x ∈ D, t > 0, 

u (x, t) = 0, x ∈ ∂D, (7) 

u (x, 0) = f (x) , x ∈ D. 

The 3D wave problem is 

utt = ∇ 2 u, x ∈ D, t > 0, 

u (x, t) = 0, x ∈ ∂D, (8) 

u (x, 0) = f (x) , x ∈ D, 

ut (x, 0) = g (x) , x ∈ D. 

We separate variables as 

u (x, t) = X (x) T (t) (9) 
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The 3D Heat Equation implies 

′T 2X 
= 

∇
= −λ = const	 (10) 

T X 

where λ = const since the l.h.s. depends solely on t and the middle X ′′/X depends 

solely on x. The 3D wave equation becomes 

′′ T 2X 

T 
=	

∇
X 

= −λ = const (11) 

On the boundaries, 

X (x) = 0, x ∈ ∂D 

The Sturm-Liouville Problem for X (x) is 

∇ 2X	 + λX = 0, x ∈ D (12) 

X (x) = 0, x ∈ ∂D 

4	 Solution for T (t) 

Suppose that the Sturm-Liouville problem (12) has eigen-solution Xn (x) and eigen­

value λn, where Xn (x) is non-trivial. Then for the 3D Heat Problem, the problem 

for T (t) is, from (10), 
T ′ 

= −λ	 (13) 
T 

with solution 

Tn (t) = cne 
−λnt (14) 

and the corresponding solution to the PDE and BCs is 

un (x, t) = Xn (x) Tn (t) = Xn (x) cne 
−λnt . 

For the 3D Wave Problem, the problem for T (t) is, from (11),


T ′′


= −λ	 (15) 
T 

with solution ��
λn

� ��
λn

�
Tn (t) = αn cos t + βn sin t (16) 

and the corresponding normal mode is un (x, t) = Xn (x) Tn (t). 
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5 Uniqueness of the 3D Heat Problem 

Ref: Guenther & Lee §10.3 

We now prove that the solution of the 3D Heat Problem 

ut = ∇ 2 u, x ∈ D 

u (x, t) = 0, x ∈ ∂D 

u (x, 0) = f (x) , x ∈ D 

is unique. Let u1, u2 be two solutions. Define v = u1 − u2. Then v satisfies 

vt = ∇ 2 v, x ∈ D 

v (x, t) = 0, x ∈ ∂D 

v (x, 0) = 0, x ∈ D 

Let � � � 
V (t) = v 2dV ≥ 0 

D 

V (t) ≥ 0 since the integrand	 v2 (x, t) ≥ 0 for all (x, t). Differentiating in time gives 

dV 
� � � 

(t) = 2vvtdV 
dt D 

Substituting for vt from the PDE yields 

dV 
� � � 

(t) = 2v∇ 2vdV 
dt D 

By result (26) derived below, 

dV 
� �	 � � � 

2 

dt 
(t) = 2 

∂D 

v∇v · n̂dS − 2 
D 

|∇v| dV (17) 

But on ∂D, v = 0, so that the first integral on the r.h.s. vanishes. Thus 

dV 
� � � 

2 

dt 
(t) = −2 

D 

|∇v| dV	 ≤ 0 (18) 

Also, at t = 0, � � � 
V (0) = v 2 (x, 0) dV = 0 

D 

Thus V (0) = 0, V (t) ≥ 0 and dV/dt ≤ 0, i.e. V (t) is a non-negative, non-increasing 

function that starts at zero. Thus V (t) must be zero for all time t, so that v (x, t) 

must be identically zero throughout the volume D for all time, implying the two 

solutions are the same, u1 = u2. Thus the solution to the 3D heat problem is unique. 

For insulated BCs, ∇v = 0 on ∂D, and hence v∇v n̂ = 0 on ∂D. Thus we can · 
still derive Eq. (18) from (17), and the uniqueness proof still holds. Thus the 3D 

Heat Problem with Type II homogeneous BCs also has a unique solution. 
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6	 Sturm-Liouville problem 

Ref: Guenther & Lee §10.2, Myint-U & Debnath §7.1 – 7.3 

Both the 3D Heat Equation and the 3D Wave Equation lead to the Sturm-Liouville 

problem 

∇ 2X	 + λX = 0, x ∈ D, (19) 

X (x) = 0, x ∈ ∂D. 

6.1 Green’s Formula and the Solvability Condition 

Ref: Guenther & Lee §8.3, Myint-U & Debnath §10.10 (Exercise 1) 

For the Type I BCs assumed here (u (x, t) = 0, for x ∈ ∂D), we now show that 

all eigenvalues are positive. To do so, we need a result that combines some vector 

calculus with the Divergence Theorem. From vector calculus, for any scalar function 

G and vector valued function F, 

∇ · (GF) = G∇ · F + F · ∇G	 (20) 

Using the divergence theorem, 
� �	 � � � 

S 

(GF) · n̂dS = 
V 

∇ · (GF) dV	 (21) 

Substituting (20) into (21) gives 
� �	 � � � � � � 

(GF) n̂dS = G∇ FdV + F · ∇GdV (22) ·	 · 
S	 V V 

Result (22) applied to G = v1 and F = ∇v2 gives 
� � 

S 

(v1∇v2) · n̂dS = 

� � � 

V 

�
v1∇ 2 v2 + ∇v2 · ∇v1

� 
dV (23) 

Result (22) applied to G = v2 and F = ∇v1 gives 

2

� � 

S 

(v2∇v1) · n̂dS = 

� � � 

V 

�
v2∇ v1 + ∇v1 · ∇v2

� 
dV (24) 

Subtracting (23) and (24) gives Green’s Formula (also known as Green’s second iden­

tity): � �	
(v1∇v2 − v2∇v1) n̂dS = 

� � � �
v1∇ 2 v2 − v2∇ 2 v1

� 
dV (25) · 

S	 V 

This is also known as a Solvability Condition, since the values of v1 and v2 on the 

boundary of D must be consistent with the values of v1 and v2 on the interior of 

D. Result (25) holds for any smooth function v defined on a volume V with closed 

smooth surface S. 
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6.2 Positive, real eigenvalues (for Type I BCs) 

Ref: Myint-U & Debnath §7.2 

Choosing G = v and F = ∇v, for some function v, in (22) gives 

� � � � � 
2 

S 

v∇v · n̂dS = 
V 

�
v∇ v + ∇v · ∇v

� 
dV 

= 

� � � 

V 

�
v∇ 2 v + |∇v| 2

� 
dV. (26) 

Result (26) holds for any smooth function v defined on a volume V with closed smooth 

surface S. 

We now apply result (26) to a solution X (x) of the Sturm-Liouville problem (19). 

Letting v = X (x), S = ∂D and V = D, Eq. (26) becomes 

� � � � � � � � 
2 

∂D 

X∇X · n̂dS = 
D 

X∇ 2XdV + 
D 

|∇X| dV (27) 

Since X (x) = 0 for x ∈ ∂D, 

� � 
X∇X n̂dS = 0 (28) · 

∂D 

Also, from the PDE in (19), 

� � � � � � 
X∇ 2XdV = −λ X2dV (29) 

D D 

Substituting (28) and (29) into (27) gives 

0 = −λ 

� � � 

D 

X2dV + 

� � � 

D 

|∇X| 2 dV (30) 

For non-trivial solutions, X = 0 at some points in D and hence by continuity of X, � � � 
D 

X2dV > 0. Thus (30) 

�
can be rearranged, 

2 

λ = 

� � � 
D 
|∇X| dV 

(31) � � � 
X2dV 

≥ 0 
D 

Since X is real, the the eigenvalue λ is also real. 

If ∇X = 0 for all points in D, then integrating and imposing the BC X (x) = 0 

for x ∈ ∂D gives X = 0 for all x ∈ D , i.e. the trivial solution. Thus ∇X is nonzero 
2at some points in D, and hence by continuity of ∇X, 

� � � 
D 
|∇X| dV > 0. Thus, 

from (31), λ > 0. 
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6.3	 Orthogonality of eigen-solutions to 

Sturm-Liouville problem 

Ref: Myint-U & Debnath §7.2 

Suppose v1, v2 are two eigenfunctions with eigenvalues λ1, λ2 of the 3D Sturm-

Liouville problem 

2 ∇ v + λv = 0, x ∈ D 

v =	 0, x ∈ ∂D 

We make use of Green’s Formula (25) with V = D, S = ∂D, which holds for any 

functions v1, v2 defined on a volume V with smooth closed connected surface S. Since 

v1 = 0 = v2 on ∂D and ∇2v1 = −λ1v1 and ∇2v2 = −λ2v2, then Eq. (25) becomes 

� � � 
0 = (λ1 − λ2) v1v2dV 

D 

Thus if λ1 = λ2,�	 � � � 
v1v2dV	 = 0, (32) 

D 

and the eigenfunctions v1, v2 are orthogonal. 

7 Heat and Wave problems on a 2D rectangle, ho­

mogeneous BCs 

Ref: Guenther & Lee §10.2, Myint-U & Debnath §9.4 – 9.6 

[Nov 7, 2006] 

7.1	 Sturm-Liouville Problem on a 2D rectangle 

We now consider the special case where the subregion D is a rectangle 

D = {(x, y) : 0 ≤ x ≤ x0, 0 ≤ y ≤ y0} 

The Sturm-Liouville Problem (19) becomes 

∂2v	 ∂2v 

∂x2	 ∂y2 
+ λv = 0, (x, y) ∈ D, (33) + 

v (0, y) = v (x0, y) = 0, 0 ≤ y ≤ y0, (34) 

v (x, 0) = v (x, y0) = 0, 0 ≤ x ≤ x0. (35) 
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Note that in the PDE (33), λ is positive a constant (we showed above that λ had to 

be both constant and positive). We employ separation of variables again, this time 

in x and y: substituting v (x, y) = X (x) Y (y) into the PDE (33) and dividing by 

X (x) Y (y) gives 
Y ′′ X ′′ 

Y 
+ λ = −

X 
Since the l.h.s. depends only on y and the r.h.s. only depends on x, both sides must 

equal a constant, say µ, 
Y ′′ X ′′ 

Y 
+ λ = −

X 
= µ (36) 

The BCs (34) and (35) imply 

X (0) Y (y) = X (x0) Y (y) = 0, 0 ≤ y ≤ y0, 

X (x) Y (0) = X (x) Y (y0) = 0, 0 ≤ x ≤ x0. 

To have a non-trivial solution, Y (y) must be nonzero for some y ∈ [0, y0] and X (x) 

must be nonzero for some x ∈ [0, x0], so that to satisfy the previous 2 equations, we 

must have 

X (0) = X (x0) = Y (0) = Y (y0) = 0 (37) 

The problem for X (x) is the 1D Sturm-Liouville problem 

′′ X + µX = 0, 0 ≤ x ≤ x0 (38) 

X (0) = X (x0) = 0 

We solved this problem in the chapter on the 1D Heat Equation. We found that for 

non-trivial solutions, µ had to be positive and the solution is 
�

mπx 
� �

mπ 
�2 

Xm (x) = am sin , µm = , m = 1, 2, 3, ... (39) 
x0 x0 

The problem for Y (y) is 

′′ Y	 + νY = 0, 0 ≤ y ≤ y0, (40) 

Y (0) = Y (y0) = 0 

where ν = λ − µ. The solutions are the same as those for (38), with ν replacing µ: 
�

nπy 
� �

nπ 
�2 

Yn (y) = bn sin , νn = , n = 1, 2, 3, ... (41) 
y0 y0 

The eigen-solution of the 2D Sturm-Liouville problem (33) – (35) is 
�

mπx 
� �

nπy 
� 

vmn (x, y) = Xm (x) Yn (y) = cmn sin sin , m, n = 1, 2, 3, ... (42) 
x0 y0 

with eigenvalue 
2 2

�
m n

� 

λmn = µm + νn = π2
2 2

+ . 
x0 y0 
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� � 

� � � � 

� � 

7.2 Solution to heat equation on 2D rectangle 

The heat problem on the 2D rectangle is the special case of (7), 

∂2u ∂2u 
ut = 

∂x2 ∂y2 
, (x, y) ∈ D, t > 0,+ 

u (x, y, t) = 0, (x, y) ∈ ∂D, 

u (x, y, 0) = f (x, y) , (x, y) ∈ D, 

where D is the rectangle D = {(x, y) : 0 ≤ x ≤ x0, 0 ≤ y ≤ y0}. We reverse the 

separation of variables (9) and substitute solutions (14) and (42) to the T (t) problem 

(13) and the Sturm-Liouville problem (33) – (35), respectively, to obtain 

�
mπx 

� �
nπy 

� 

∞

umn (x, y, t) = Amn sin sin e −λmnt 

x0 y0 

∞

2 2 m + n t
�

mπx 
� �

nπy 
� 

−π2

„ 

x y

« 

2 2 
0 0= Amn sin sin e 

x0 y0 

To satisfy the initial condition, we sum over all m, n to obtain the solution, in 

general form, 

∞� �
mπx 

� �
nπy 

�
∞� 
(x, y, t) = Amn sin sin −λmnt u (x, y, t)
 (43)
=
 umn e


x0 y0 m=1 n=1 m=1 n=1 

Setting t = 0 and imposing the initial condition u (x, y, 0) = f (x, y) gives 

�
mπx 

� �
nπy 

�
∞∞∞∞

f (x, y) = u (x, y, 0) = Amnvmn (x, y) = Amn sin sin 
x0 y0 m=1 n=1 m=1 n=1 

where vmn (x, y) = sin 
x0 y0 

�
mπx 
� �

nπy 
� 

are the eigenfunctions of the 2D Sturm­sin 

Liouville problem on a rectangle, (33) – (35). Multiplying both sides by v ˆ (x, y)mn̂

(m̂, n̂ = 1, 2, 3, ...) and integrating over the rectangle D gives 

� �
 � �
∞∞

f (x, y) v ˆ (x, y) dA = (x, y) v ˆ (x, y) dA (44) mn̂ Amn vmn mn̂
D m=1 n=1 D 

where dA = dxdy. Note that 

� � � � � 
ˆ

�x0 
�

mπx mπx 
(x, y) v ˆ (x, y) dA = sin sin dx vmn mn̂

D 0 x0 x0 � � 
ˆ

�� y0 
�

nπy nπy × 
0 

sin 
y0 

sin 
y0 

dy 

� 
x0y0/4, m = m̂ and n = n̂ 

= 
0, otherwise 
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� � 

Thus (44) becomes 
� � 

Am̂n̂
f (x, y) vm̂n̂ (x, y) dA = x0y0

4D 

Since m̂, n̂ are dummy variables, we replace m̂ by m and n̂ by n, and rearrange to 

obtain 

4 
� � 

= f (x, y) v ˆ (x, y) dA 
x0y0 D 

4 
� x0 

� y0 
�

mπx 
� �

nπy 
� 

Amn mn̂

= f (x, y) sin sin dydx (45) 
x0y0 0 0 x0 y0 

7.3 Solution to wave equation on 2D rectangle, homogeneous 

BCs 

The solution to the wave equation on the 2D rectangle follows similarly. The general 

3D wave problem (8) becomes 

∂2u ∂2u 
utt = 

∂x2 ∂y2 
, (x, y) ∈ D, t > 0,+ 

u (x, y, t) = 0, (x, y) ∈ ∂D, 

u (x, y, 0) = f (x, y) , (x, y) ∈ D, 

ut (x, y, 0) = g (x, y) , (x, y) ∈ D, 

where D is the rectangle D = {(x, y) : 0 ≤ x ≤ x0, 0 ≤ y ≤ y0}. We reverse the 

separation of variables (9) and substitute solutions (16) and (42) to the T (t) problem 

(15) and the Sturm Liouville problem (33) – (35), respectively, to obtain 

umn (x, y, t) = sin 

�
mπx 

� 

sin 

�
nπy 

��
αnm cos 

��
λnmt

� 
+ βnm sin 

��
λnmt

�� 

x0 y0 �
mπx 

� �
nπy 

� 

= sin sin 
x0 y0 � � � 

m2 n2 
� � � 

m2 n2 
�� 

× αnm cos πt 
x0

2 + 
y0

2 + βnm sin πt 
x0

2 + 
y0

2 

To satisfy the initial condition, we sum over all m, n to obtain the solution, in 

general form, 
∞ ∞

u (x, y, t) = umn (x, y, t) (46) 
m=1 n=1 

Setting t = 0 and imposing the initial conditions 

u (x, y, 0) = f (x, y) , ut (x, y, 0) = g (x, y) 
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gives


f (x, y) = u (x, y, 0) = αmnvmn (x, y) 
∞�� 

=1 =1 m n

∞

�
mπx 

� �
nπy 

�


= αmn sin sin 
x0 

∞��∞

y0 m=1 n=1 

= 
∞�� 

=1 =1 m n

∞ �
λmng (x, y) = ut (x, y, 0) βmnvmn (x, y) 

�
mπx 

� �
nπy 

�


x0 y0 

where vmn (x, y) = sin 
x0 y0 

�
mπx 
� 

sin 
�

nπy 
� 

are the eigenfunctions of the 2D Sturm Li­

ouville problem on a rectangle, (33) – (35). As above, multiplying both sides by 

v ˆ (x, y) (m̂, n̂ = 1, 2, 3, ...) and integrating over the rectangle D gives mn̂

∞�� 

=1 =1 m n

� � 
4 

αmn = f (x, y) vmn (x, y) dxdy 

∞

x0y0 D 

4 
� � 

βmn = g (x, y) vmn (x, y) dxdy 
x0y0

√
λmn D 

8 Heat and Wave equations on a 2D circle, homo­

geneous BCs 

Ref: Guenther & Lee §10.2, Myint-U & Debnath §9.4, 9.13 (exercises) 

We now consider the special case where the subregion D is the unit circle (we may 

assume the circle has radius 1 by choosing the length scale l for the spatial coordinates 

as the original radius): 
2 2D = 

�
(x, y) : x + y ≤ 1

� 

The Sturm-Liouville Problem (19) becomes 

∂2v ∂2v 

∂x2 ∂y2 
+ λv = 0, (x, y) ∈ D, (47) + 

v (x, y) = 0, x 2 + y 2 = 1, (48) 

where we already know λ is positive and real. It is natural to introduce polar coor­

dinates via the transformation 

x = r cos θ, y = r sin θ, w (r, θ, t) = u (x, y, t) 

for 

0 ≤ r ≤ 1, −π ≤ θ < π. 
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�
λmnβmn sin sin
=




�

You can verify that 

∂2v ∂2v 1 ∂ 
� 

∂w 
� 

1 ∂2w2 
2

∇ v = 
∂x2 

+ 
∂y2 

= 
r ∂r 

r
∂r 

+ 
r ∂θ2 

The PDE becomes 

1 ∂ 
� 

∂w 
� 

1 ∂2w 

r ∂r ∂r 
+ 

r2 ∂θ2 
+ λw = 0, 0 ≤ r ≤ 1, −π ≤ θ < π (49) r 

The BC (48) requires 

w (1, θ) = 0, −π ≤ θ < π. (50) 

We use separation of variables by substituting 

w (r, θ) = R (r) H (θ) (51) 

into the PDE (49) and multiplying by r2/ (R (r) H (θ)) and then rearranging to obtain 

d 
� 

dR 
� 

1 d2H 1 
r 
dr 

r
dr R (r)

+ λr2 = −
dθ2 H (θ) 

Again, since the l.h.s. depends only on r and the r.h.s. on θ, both must be equal to 

a constant µ, 
d 
� 

dR 
� 

1 d2H 1 
r 
dr 

r
dr R (r)

+ λr2 = −
dθ2 H (θ)

= µ (52) 

The BC (50) becomes 

w (1, θ) = R (1) H (θ) = 0 

which, in order to obtain non-trivial solutions (H (θ) = 0 for some θ), implies 

R (1) = 0 (53) 

In the original (x, y) coordinates, it is assumed that v (x, y) is smooth (i.e. contin­

uously differentiable) over the circle. When we change to polar coordinates, we need 

to introduce an extra condition to guarantee the smoothness of v (x, y), namely, that 

w (r,−π) = w (r, π) , wθ (r,−π) = wθ (r, π) . (54) 

Substituting (51) gives 

dH dH 
H (−π) = H (π) , = (π) . (55) (−π)

dθ dθ 

The solution v (x, y) is also bounded on the circle, which implies R (r) must be 

bounded for 0 ≤ r ≤ 1. 
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The problem for H (θ) is 

d2H dH dH 

dθ2 
+ µH (θ) = 0; H (−π) = H (π) , 

dθ 
(−π)

dθ 
(π) . (56) = 

You can show that for µ < 0, we only get the trivial solution H (θ) = 0. For µ = 0, 

we have H (θ) = const, which works. For µ > 0, non-trivial solutions are found only 

when µ = m2 , 

Hm (θ) = am cos (mθ) + bm sin (mθ) 

Thus, in general, we may assume λ = m2, for m = 0, 1, 2, 3, ... 

The equation for R (r) in (52) becomes 

r r 
d 
� 

dR 
� 

1
+ λr2 = µ = m 2 , m = 0, 1, 2, 3, ... 

dr dr R (r) 

Rearranging gives 

d2Rm dRm 2
� 
Rm = 2 r 

dr2 
+ r 

dr 
+ 
�
λr2 − m 0; Rm (1) = 0, |Rm (0)| < ∞ (57) 

We know already that λ > 0, so we can let 

¯s = 
√

λr, Rm (s) = Rm (r) 

so that (57) becomes 

2 d
2R̄m dR̄m 2 

� 
s 

ds2 
+ s 

ds 
+ 
�
s − m 2

� 
R̄m = 0; R̄m 

�√
λ = 0, 

��R̄m (0)
�� < ∞ (58) 

The ODE is called Bessel’s Equation which, for each m = 0, 1, 2, ... has two linearly 

independent solutions, Jm (s) and Ym (s), called the Bessel functions of the first and 

second kinds, respectively, of order m. The function Jm (s) is bounded at s = 0; 

the function Ym (s) is unbounded at s = 0. The general solution to the ODE is 

R̄m (s) = cm1Jm (s) + cm2Ym (s) where cmn are constants of integration. Our bound­

edness criterion 
��R̄m (0)

�� < ∞ at s = 0 implies c2m = 0. Thus 

R̄m (s) = cmJm (s) , Rm (r) = cmJm 

�√
λr
� 

. 

[Nov 9, 2006] 

The Bessel Function Jm (s) of the first kind of order m has power series 

� (−1)k s2k+m 

Jm (s) = . (59) 
k! (k + m)!22k+m 

k=0 

Jm (s) can be expressed in many ways, see Handbook of Mathematical Functions by 

Abramowitz and Stegun, for tables, plots, and equations. The fact that Jm (s) is 

14




expressed as a power series is not a drawback. It is like sin (x) and cos (x), which are 

also associated with power series. Note that the power series (59) converges absolutely 

for all s ≥ 0 and converges uniformly on any closed set s ∈ [0, L]. To see this, note 

that each term in the sum satisfies 

(−1)k s2k+m L2k+m
�����	

����� ≤k! (k + m)!22k+m k! (k + m)!22k+m 

Note that the sum of numbers 
�	 L2k+m 

k! (k + m)!22k+m 
k=0 

converges by the Ratio Test, since the ratio of successive terms in the sum is 

L2(k+1)+m 

(k+1)!(k+1+m)!22(k+1)+m L2	 L2 � 
L 

�2

������ 

������ 
=	 = 

L2k+m	 2(k + 1) (k + 1 + m) 4 
≤

(k + 1) 4 2 (k + 1) 
k!(k+m)!22k+m 

Thus for k > N = ⌈L/2⌉, 
L2(k+1)+m 

(k+1)!(k+1+m)!22(k+1)+m 
� 

L 
�2

������	

������ 
< < 1 

L2k+m 2 (N + 1) 
k!(k+m)!22k+m 

Since the upper bound is less than one and is independent of the summation index k, 

then by the Ratio test, the sum converges absolutely. By the Weirstrass M-Test, the 

infinite sum in (59) converges uniformly on [0, L]. Since L is arbitrary, the infinite 

sum in (59) converges uniformly on any closed subinterval [0, L] of the real axis. 

Each Bessel function Jm (s) has an infinite number of zeros (roots) for s > 0. Let 

jm,n be the n’th zero of the function Jm (s). Note that 

1 2 3 

J0 (s) j0,1 = 2.4048 j0,2 = 5.5001 j0,3 = 8.6537 

J1 (s) j1,1 = 3.852 j1,2 = 7.016 j1,3 = 10.173 

The second BC requires 

¯
�√

λ
� �√

λ
�

Rm (1) = Rm = Jm = 0 

This has an infinite number of solutions, namely 
√

λ = jm,n for n = 1, 2, 3, .... Thus 

the eigenvalues are 

j2λmn = m,n, m, n = 1, 2, 3, ... 

with corresponding eigenfunctions Jm (rjm,n). The separable solutions are thus 
� 

J0 (rj0,n)	 n = 1, 2, 3, ... 
vmn (x, y) = wmn (r, θ) = 

Jm (rjm,n) (αmn cos (mθ) + +βmn sin (mθ)) m,n = 1, 2, 3, ... 

(60) 
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8.1	 Solution to heat equation on the 2D circle, homogeneous 

BCs 

The heat problem on the 2D circle is the special case of (7), 

∂2u	 ∂2u 
ut = 

∂x2	 ∂y2 
, (x, y) ∈ D, t > 0,+ 

u (x, y, t) = 0, (x, y) ∈ ∂D, 

u (x, y, 0) = f (x, y) , (x, y) ∈ D, 

where D is the circle D = {(x, y) : x2 + y2 ≤ 1}. We reverse the separation of vari­

ables (9) and substitute solutions (14) and (42) to the T (t) problem (13) and the 

Sturm Liouville problem (47) – (48), respectively, to obtain 

m,numn (x, y, t) = vmn (x, y) e −λmnt = vmn (x, y) e −J2 t 

where vmn is given in (60). 

To satisfy the initial condition, we sum over all m, n to obtain the solution, in 

general form, 

∞�∞� ∞�∞�
vmn (x, y) e
−λmnt u (x, y, t) =
 umn (x, y, t)
 =


m=1 n=1	 m=1 n=1 
∞�∞�

Jm (rjm,n) (αmn cos (mθ) + βmn sin (mθ)) e −λmnt (61) =

m=1 n=1 

where r = 
�

x2 + y2 and tan θ = y/x. Setting t = 0 and imposing the initial condition 

u (x, y, 0) = f (x, y) gives 

∞�∞�
f (x, y) = u (x, y, 0)
 =
 vmn (x, y)


m=1 n=1 

We can use orthogonality relations to find αmn and βmn. 

9	 The Heat Problem on a square with inhomoge­

neous BC 

We now consider the case of the heat problem on the 2D unit square 

D = {(x, y) : 0 ≤ x, y ≤ 1} , (62) 
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� 

where a hot spot exists on the left side, 

ut = ∇ 2 u, (x, y) ∈ D 

u (x, y, t) = 

� 
u0/ε, {x = 0, |y − y0| < ε/2} 

(63) 
0, otherwise on ∂D 

u (x, y, 0) = f (x, y) 

where the hot spot is confined to the left side: 0 ≤ y0 − ε/2 ≤ y ≤ y0 + ε/2 ≤ 1. 

9.1 Equilibrium solution and Laplace’s Eq. on a rectangle 

Ref: Guenther & Lee §8.1, 8.2, Myint-U & Debnath §6.6, 8.7 

As in the 1D case, we first find the equilibrium solution uE (x, y), which satisfies 

the PDE and the BCs, 

2 ∇ uE = � 
0, (x, y) ∈ D 

uE (x, y) = 
u0/ε {x = 0, |y − y0| < ε/2}

0 otherwise on ∂D 

The PDE for uE is called Laplace’s equation. Laplace’s equation is an example of 

an elliptic PDE. The wave equation is an example of a hyperbolic PDE. The heat 

equation is a parabolic PDE. These are the three types of second order (i.e. involving 

double derivatives) PDEs: elliptic, hyperbolic and parabolic. 

We proceed via separation of variables: uE (x, y) = X (x) Y (y), so that the PDE 

becomes 
X ′′ Y ′′ 

= =−
X Y 

−λ 

where λ is constant since the l.h.s. depends only on x and the middle only on y. The 

BCs are 

Y (0) = Y (1) = 0, X (1) = 0 

and 

X (0) Y (y) = 
u0/ε |y − y0| < ε/2


0 otherwise


We first solve for Y (y), since we have 2 easy BCs:


′′ Y + λY = 0; Y (0) = Y (1) = 0 

The non-trivial solutions, as we have found before, are Yn = sin (nπy) with λn = n2π2 , 

for each n = 1, 2, 3, ... Now we consider X (x): 

′′ X n 2π2X = 0−

17 



and hence 

X (x) = c1e 
nπx + c2e 

−nπx 

An equivalent and more convenient way to write this is 

X (x) = c3 sinh nπ (1 − x) + c4 cosh nπ (1 − x) 

Imposing the BC at x = 1 gives 

X (1) = c4 = 0 

and hence 

X (x) = c3 sinh nπ (1 − x) 

Thus the equilibrium solution to this point is 

∞

uE (x, y) = 
� 

An sinh (nπ (1 − x)) sin (nπy) 
n=1 

You can check that this satisfies the BCs on x = 1 and y = 0, 1. Also, from the BC 

on x = 0, we have 

∞	
� 

uE (0, y) = 
� 

An sinh (nπ) sin (nπy) = 
u0/ε |y − y0| < ε/2 

0 otherwise 
n=1 

Multiplying both sides by sin (mπy) an integrating in y gives 

∞ � 1	 � y0+ε/2 u0
� 

An sinh (nπ) sin (nπy) sin (mπy) dy = sin (mπy) dy 
ε 

n=1 0	 y0−ε/2 

From the orthogonality of sin’s, we have 

1 
� y0+ε/2 u0

Am sinh (mπ) = sin (mπy) dy 
2 y0−ε/2 ε 

Thus, 

2u0 
� y0+ε/2


Am = sin (mπy) dy

ε sinh (mπ) y0−ε/2 

2u0 
� 

cos (mπy)
�y0+ε/2 

= 
ε sinh (mπ) 

− 
mπ y0−ε/2 

2u0 
=	

εmπ sinh (mπ)
(cos (mπ (y0 − ε/2)) − cos (mπ (y0 + ε/2))) 

4u0 sin (mπy0) sin
�

mπε 
� 

2 = 
εmπ sinh (mπ) 
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Thus 
∞

4u0 sin (nπy0) sin
�

nπε 
� 

uE (x, y) = 
� 

2 sinh (nπ (1 − x)) sin (nπy)
επ n sinh (nπ)

n=1 

To solve the transient problem, we proceed as in 1-D by defining the function 

v (x, y, t) = u (x, y, t) − uE (x, y) 

so that v (x, y, t) satisfies 

2 vt = v∇ 
v = 0 on ∂D 

v (x, y, 0) = f (x, y) − uE (x, y) 

9.2 First term approximation 

To approximate the equilibrium solution uE (x, y), note that 

sinh nπ (1 − x)
= 

enπ(1−x) − e−nπ(1−x) 

sinh nπ enπ e−nπ −
For sufficiently large n, we have 

sinh nπ (1 − x) enπ(1−x) 
−nπx 

sinh nπ 
≈ 

enπ 
= e 

Thus the terms decrease in magnitude (x > 0) and hence uE (x, y) can be approxi­

mated the first term in the series, 

4u0 sin (πy0) sin
�

πε 
� 

2 uE (x, y) ≈ 
επ sinh (π) 

sinh (π (1 − x)) sin (πy) 

A plot of sinh (π (1 − x)) sin (πy) is given below. The temperature in the center of 

the square is approximately 

�
1 1 4u0 2 

�� 
sin (πy0) sin

�
πε �π� 

sin 
�π� 

uE ,
2 2 

≈ 
επ sinh (π) 

sinh 
2 2 

9.3 Easy way to find steady-state temperature at center 

For y0 = 1/2 and ε = 1, we have 

�
1 1

� 
4u0 sinh 

�
π 
2 

� 
u0 

, .uE 
2 2 

≈ 
π sinh (π) 

≈ 
4 
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Figure 1: Plot of sinh (π(1 − x)) sin(πy). 

It turns out there is a much easier way to derive this last result. Consider a plate 

with BCs u = u0 on one side, and u = 0 on the other 3 sides. Let α = uE 

�
1
2 , 

1
2 

�
. 

Rotating the plate by 90o will not alter uE 

�
1
2 , 

1
2 

�
, since this is the center of the plate. 

Let uEsum be the sums of the solutions corresponding to the BC u = u0 on each of the 

four different sides. Then by linearity, uEsum = u0 on all sides and hence uEsum = u0 

across the plate. Thus �
1 1

� 

, = 4αu0 = uEsum 
2 2 

Hence α = uE 2 2 

�
1 , 1 
� 

= u0/4. 

9.4 Placement of hot spot for hottest steady-state center 

Note that 

sin (πy0) sin
�

πε
��

1 1
� 

4u0 2 
�π� 

,uE 
2 2 

≈ 
επ sinh (π) 

sinh 
2 

sinh 
�

π
� 

sin (πy0) sin
�

πε
�

4u0 2 2 = 
π sinh (π) ε 

u0 2 2 

�
sin 
�

πε
�� 

≈ 
4 

sin (πy0)
π πε 

2 

u0 2 ≈ 
4 

sin (πy0)
π 

u0 
= sin (πy0)

2π 
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for small ε. Thus the steady-state center temperature is hottest when the hot spot is 

placed in the center of the side, i.e. y0 = 1/2. 

9.5	 Solution to inhomogeneous heat problem on square 

We now use the standard trick and solve the inhomogeneous Heat Problem (63), 

ut = ∇ 2 u, (x, y) ∈ D 

u (x, y, t) = 

� 
u0/ε, {x = 0, |y − y0| < ε/2} 

(64) 
0, otherwise on ∂D 

u (x, y, 0) = f (x, y) 

using the equilibrium solution uE. We define the transient part of the solution as 

v (x, y, t) = u (x, y, t) − uE (x, y) 

where u (x, y, t) is the solution to (64). The problem for v (x, y, t) is therefore 

vt = ∇ 2 v, (x, y) ∈ D 

v (x, y, t) = 0, (x, y) ∈ ∂D 

v (x, y, 0) = f (x, y) − uE (x, y) 

This is the Heat Problem with homogeneous PDE and BCs. We found the solution 

to this problem above in (43), (provided we use x0 = 1 = y0 in (43); don’t mix up 

the side length y0 in (43) with the location y0 of the hot spot in the homogeneous 

problem): 
∞ ∞

2
��	

−π2(m +n2)t v (x, y, t) = Amn sin (mπx) sin (nπy) e 
m=1 n=1 

where 
1� 1 � 

Amn = 4 (f (x, y) − uE (x, y)) sin (mπx) sin (nπy) dydx 
0 0 

Thus we have found the full solution u (x, y, t). 

10	 Heat problem on a circle with inhomogeneous 

BC 

Consider the heat problem 

ut = ∇ 2 u, (x, y) ∈ D 

u (x, y, t) = g (x, y) , (x, y) ∈ ∂D (65) 

u (x, y, 0) = f (x, y) 
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where D = {(x, y) : x2 + y2 ≤ 1} is a circle (disc) of radius 1. 

10.1 Equilibrium solution and Laplace’s Eq. on a circle 

Ref: Guenther & Lee §8.1, 8.2, Myint-U & Debnath §8.4, 8.5 

To solve the problem, we must first introduce the steady-state u = uE (x, y) which 

satisfies the PDE and BCs, 

2 ∇ uE = 0, (x, y) ∈ D,


uE (x, y) = g (x, y) , (x, y) ∈ ∂D.


As before, switch to polar coordinates via 

x = r cos θ, y = r sin θ, wE (r, θ) = uE (x, y) 

for 

0 ≤ r ≤ 1, −π ≤ θ < π. 

The problem for uE becomes 

1 ∂ 
� 

∂wE 

� 
1 ∂2wE 

r ∂r 
r

∂r 
+ 

r2 ∂θ2 
= 0, 0 ≤ r ≤ 1, −π ≤ θ < π (66) 

w (r,−π) = w (r, π) , wθ (r,−π) = wθ (r, π) , (67)


|w (0, θ)| < ∞ (68)


w (1, θ) = ĝ (θ) , −π ≤ θ < π (69)


where ĝ (θ) = g (x, y) for (x, y) ∈ ∂D and θ = arctan (y/x). 

We separate variables 

w (r, θ) = R (r) H (θ) 

and the PDE becomes 

r d 
� 

dR 
� 

d2H 1 

R (r) dr 
r

dr 
= −

dθ2 H (θ) 

Since the l.h.s. depends only on r and the r.h.s. on θ, both must be equal to a 

constant µ, 
r d 

� 
dR 
� 

d2H 1 
r 

R (r) dr dr 
= −

dθ2 H (θ)
= µ


The problem for H (θ) is, as before,


d2H dH dH


dθ2 
+ µH (θ) = 0; H (−π) = H (π) , 

dθ 
(−π)

dθ 
(π) ,= 
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� 

� 

�

with eigen-solutions 

Hm (θ) = am cos (mθ) + bm sin (mθ) , m = 0, 1, 2, ... 

The problem for R (r) is 

d 
� 

dR 
� 

2R 2 d
2R dR 

0 = r 
dr 

r
dr 

− m = r 
dr2 

+ r
dr 

− m 2R 

Try R (r) = rα to obtain the auxiliary equation 

α (α − 1) + α − m 2 = 0 

whose solutions are α = ±m. Thus for each m, the solution is Rm (r) = c1r
m +c2r

−m . 

For m > 0, r−m blows up as r 0. Our boundedness criterion (68) implies c2 = 0. →
Hence 

Rm (r) = cmr m 

where cm are constants to be found by imposing the BC (69). The separable solutions 

satisfying the PDE (66) and conditions (67) to (68), are 

wm (r, θ) = r m (Am cos (mθ) + Bm sin (mθ)) , m = 0, 1, 2, ... 

The full solution is the infinite sum of these over m, 

∞

uE (x, y) = wE (r, θ) = r m (Am cos (mθ) + Bm sin (mθ)) (70) 
m=0 

We still need to find the Am, Bm. 

Imposing the BC (69) gives 

∞� 
(Am cos (mθ) + Bm sin (mθ)) = ĝ (θ) (71) 

m=0 

The orthogonality relations are 
π 

cos (mθ) sin (nθ) dθ = 0 
−π 

� π 
� 

cos (mθ) cos (nθ) 
� � 

π, m = n 
dθ = , (m > 0) . 

−π sin (mθ) sin (nθ) 0, m = n 

Multiplying (71) by sin nθ or cos nθ and applying these orthogonality relations gives 
π1 

� 
A0 = ĝ (θ) dθ 

2π 
−π 

1 
� π 

Am = ĝ (θ) cos (mθ) dθ (72) 
π 

−π 

1 
� π 

Bm = ĝ (θ) sin (mθ) dθ 
π 

−π 
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Figure 2: Setup for hot spot problem on circle. 

10.1.1 Hot spot on boundary 

Suppose � 
u0 

ĝ (θ) = θ0+π 
−π ≤ θ ≤ θ0 

0 otherwise 

which models a hot spot on the boundary. The Fourier coefficients in (72) are thus 

u0 u0
A0 = , Am = sin (mθ0)

2π mπ (θ0 + π)

Bm = −
mπ (θ

u

0

0 

+ π)
(cos (mθ0) − (−1)m) 

Thus the steady-state solution is 

∞

u0 
+ 
� 

r m 

� 
u0 sin (mθ0)

cos (mθ) − u0 (cos (mθ0) − (−1)m)
sin (mθ) 

� 

uE = 
2π mπ (θ0 + π) mπ (θ0 + π)

m=1 

10.1.2 Interpretation 

The convergence of the infinite series is rapid if r ≪ 1. If r ≈ 1, many terms are 

required for accuracy. 

The center temperature (r = 0) at equilibrium (steady-state) is 

u0 1 
� π 

uE (0, 0) = wE (0, θ) = = ĝ (θ) dθ 
2π 2π 

−π 
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i.e., the mean temperature of the circumference. This is a special case of the Mean 

Value Property of solutions to Laplace’s Equation ∇2u = 0. 

We now consider plots of uE (x, y) for some interesting cases. We draw the level 

curves (isotherms) uE = const as solid lines. Recall from vector calculus that the 

gradient of uE, denoted by ∇uE, is perpendicular to the level curves. Recall also 

from the physics that the flux of heat is proportional to ∇uE. Thus heat flows along 

the lines parallel to ∇uE. Note that the heat flows even though the temperature is in 

steady-state. It is just that the temperature itself at any given point does not change. 

We call these lines the “heat flow lines” or the “orthogonal trajectories”, and draw 

these as dashed lines in the figure below. 

Note that lines of symmetry correspond to (heat) flow lines. To see this, let nl 

be the normal to a line of symmetry. Then the flux at a point on the line is ∇u nl.· 
Rotate the image about the line of symmetry. The arrow for the normal to the line of 

symmetry is now pointing in the opposite direction, i.e. −nl, and the flux is −∇u nl.· 
But since the solution is the same, the flux across the line must still be ∇u nl. Thus · 

∇u · nl = −∇u · nl 

which implies ∇u nl = 0. Thus there is no flux across lines of symmetry. Equivalently, ·
∇u is perpendicular to the normal to the lines of symmetry, and hence ∇u is parallel 

to the lines of symmetry. Thus the lines of symmetry are flow lines. Identifying the 

lines of symmetry help draw the level curves, which are perpendicular to the flow 

lines. Also, lines of symmetry can be thought of as an insulating boundary, since 

∇u nl = 0. · 
(i) θ0 = 0. Then 

∞

u0 2u0 
� 

2n−1 sin ((2n − 1) θ) 

2π 
− 

π2 
r 

2n − 1 
uE = 

m=1 

Use the BCs for the boundary. Note that the solution is symmetric with respect 

to the y-axis (i.e. even in x). The solution is discontinuous at {y = 0, x = ±1}, or 

{r = 1, θ = 0, π}. See plot. 

(ii) −π < θ0 < −π/2. The sum for uE is messy, so we use intuition. We start 

with the boundary conditions and use continuity in the interior of the plate to obtain 

a qualitative idea of the level curves and heat flow lines. See plot. 

(iii) (a heat spot). Again, use intuition to obtain a qualitative sketch θ0 → −π+ 

of the level curves and heat flow lines. Note that the temperature at the hot point 

is infinite. See plot. The heat flux lines must go from a point of hot temperature to 

a point of low temperature. Since the temperature along boundary is zero except at 
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Figure 3: Plots of steady-state temperature due to a hot segment on boundary. 

θ = −π, then all the heat flux lines must leave the hot spot and extend to various 

points on the boundary. 

10.2 Solution to inhomogeneous heat problem on circle 

We now use the standard trick and solve the inhomogeneous Heat Problem (65), 

ut = ∇ 2 u, (x, y) ∈ D 

u (x, y, t) = g (x, y) , (x, y) ∈ ∂D (73) 

u (x, y, 0) = f (x, y) 

using the equilibrium solution uE. We define the transient part of the solution as 

v (x, y, t) = u (x, y, t) − uE (x, y) 

where u (x, y, t) is the solution to (73). The problem for v (x, y, t) is therefore 

vt = ∇ 2 v, (x, y) ∈ D 

v (x, y, t) = 0, (x, y) ∈ ∂D 

v (x, y, 0) = f (x, y) − uE (x, y) 

This is the Heat Problem with homogeneous PDE and BCs. We found the solution 

to this problem above in (61), 

∞ ∞

v (x, y, t) = 
�� 

Jm (rjm,n) (αmn cos (mθ) + βmn sin (mθ)) e −λmnt 

m=1 n=1 

where αmn and βmn are found from orthogonality relations and f (x, y) − uE (x, y). 

Thus we have found the full solution u (x, y, t). 
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11 Mean Value Property for Laplace’s Eq. 

Ref: Guenther & Lee §8.4, Myint-U & Debnath §8.4 

Theorem [Mean Value Property] Suppose v (x, y) satisfies Laplace’s equation 

in a 2D domain D, 
2 ∇ v = 0, (x, y) ∈ D. (74) 

Then at any point (x0, y0) in D, v equals the mean value of the temperature around 

any circle centered at (x0, y0) and contained in D, 

1 
� π 

v (x0, y0) = v (x0 + R cos θ, y0 + R sin θ) dθ. (75) 
2π 

−π 

Note that the curve {(x0 + R cos θ, y0 + R sin θ) : −π ≤ θ < π} traces the circle of 

radius R centered at (x0, y0). 

Proof: To prove the Mean Value Property, we first consider Laplace’s equation 

(74) on the unit circle centered at the origin (x, y) = (0, 0). We already solved this 

problem, above, when we solved for the steady-state temperature uE that took the 

value ĝ (θ) on the boundary. The solution is Eqs. (70) and (72). Setting r = 0 in 

(70) gives the center value 

1 
� π 

uE (0, 0) = A0 = ĝ (θ) dθ (76) 
2π 

−π 

On the boundary of the circle (of radius 1), (x, y) = (cos θ, sin θ) and the BC implies 

that uE = ĝ (θ) on that boundary. Thus, ĝ (θ) = uE (cos θ, sin θ) and (76) becomes 

1 
� π 

uE (0, 0) = A0 = uE (cos θ, sin θ) dθ. (77) 
2π 

−π


We now consider the region


2 2B(x0,y0) (R) = 
�
(x, y) : (x − x0) + (y − y0) ≤ R2

� 
, 

which is a disc of radius R centered at (x, y) = (x0, y0). Since B(x0,y0) (R) ⊆ D, 

Laplace’s equation (74) holds on this disc. Thus 

2 ∇ v = 0, (x, y) ∈ B(x0,y0) (R) . (78) 

We make the change of variable 

x̂ = 
x − x0 

, ŷ = 
y − y0 

, uE (x̂, ŷ) = v (x, y) (79) 
R R 

to map the circle B(x0,y0) (R) into the unit disc {(x̂, ŷ) : x̂2 + ŷ2 ≤ 1}. Laplace’s equa­

tion (78) becomes 

∇̂2 uE = 0, (x̂, ŷ) ∈
�
(x̂, ŷ) : x̂ 2 + ŷ 2 ≤ 1

� 
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where ˆ 2 = (∂2/∂x̂2, ∂2/∂ŷ2). The solution is given by Eqs. (70) and (72), and we ∇
found the center value above in Eq. (77). Reversing the change of variable (79) in 

Eq. (77) gives 

1 
� π 

v (x0, y0) = v (x0 + R cos θ, y0 + R sin θ) dθ 
2π 

−π 

as required. � 

For the heat equation, the Mean Value Property implies the equilibrium tempera­

ture at any point (x0, y0) in D equals the mean value of the temperature around any 

disc centered at (x0, y0) and contained in D. 

12 Maximum Principle for Laplace’s Eq. 

Ref: Guenther & Lee §8.4, Myint-U & Debnath §8.2 

Theorem [Maximum Principle] Suppose v (x, y) satisfies Laplace’s equation 

in a 2D domain D, 
2 ∇ v = 0, (x, y) ∈ D. 

Then the function v takes its maximum and minimum on the boundary of D, ∂D. 

Proof: Let (x0, y0) be an interior point in D where v takes it’s maximum. In 

particular, (x, y) is not on the boundary ∂D of D. The Mean Value Property implies 

that for any disc B(x0,y0)(R) of radius R > 0 centered at (x0, y0), 

1 
� π 

v (x0, y0) = v (x0 + R cos θ, y0 + R sin θ) dθ 
2π 

−π 

= Average of v on boundary of circle 

But the average is always between the minimum and maximum. Thus v (x0, y0) must 

be between the minimum and maximum value of v (x, y) on the boundary of the disc. 

But since v (x0, y0) is the maximum of v on D, then the entire boundary of the circle 

must have value v (x0, y0). Since R > 0 is arbitrary, this holds for all values in the disc 

B(x0,y0)(R). Keep increasing R until the disc hits the boundary of D. Then v (x0, y0) 

is a value of v along the boundary of D. 

A similar argument holds for the minimum of v. � 

Corollary If v = 0 everywhere on the boundary, then v must be zero at every-

where in D. 

For the homogeneous heat equation (i.e. no sinks/sources), this implies the equi­

librium temperature attains its maximum/minimum on the boundary. 
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If the boundary is completely insulated, ∇v = 0 on ∂D, then the equilibrium 

temperature is constant. To see this, we apply result (26) to the case where v is the 

solution to Laplace’s equation with ∇v = 0 on ∂D, 

0 = 

� � 

∂D 

v∇v · n̂dS = 

� � � 

D 

�
v∇ 2 v + |∇v| 2

� 
dV = 

� � � 

D 

|∇v| 2 dV 

Thus, by continuity, |∇v| = 0 and ∇v = 0 everywhere in D and hence v = const in 

D. 

13 Eigenvalues on different domains 

In this section we revisit the Sturm-Liouville problem 

2 ∇ v + λv = 0, x ∈ D 

v = 0, x ∈ ∂D 

and consider the effect of the shape of the domain on the eigenvalues. 

Definition Rayleigh Quotient 

R (v) = 

� � � 
D 
∇v · ∇vdV 

(80) � � � 
v2dV 

D 

Theorem Given a domain D ⊆ R3 and any function v that is piecewise smooth 

on D, non-zero at some points on the interior of D, and zero on all of ∂D, then the 

smallest eigenvalue of the Laplacian on D satisfies 

λ ≤ R (v) 

and R (h) = λ if and only if h (x) is an eigen-solution of the Sturm Liouville problem 

on D. 

Sketch Proof: We use result (26) derived for any smooth function v defined on 

a volume V with closed smooth surface S. 
� � � � � 

2 n̂dS = 
∂D 

v∇v · 
D 

�
v∇ v + ∇v · ∇v

� 
dV 

In the statement of the theorem, we assumed that v = 0 on ∂D, and hence 
� � � � � � 

D 

∇v · ∇vdV = − 
D 

v∇ 2vdV (81) 

Let {φn} be an orthonormal basis of eigenfunctions on D, i.e. all the functions φn 

which satisfy 

∇ 2φn + λnφn = 0, x ∈ D 

φn = 0, x ∈ ∂D 
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�

� � 

� � � 

�

and � � � � 
1, m = n 

φnφmdV = 
D 0, m = n 

We can expand v in the eigenfunctions, 

v (x) = Anφn (x) 

where the An are constants. Assuming we can differentiate the sum termwise, we 

have 

∞� 

=1 n

∇
2 v = 
� 

An∇ 2φn = 
∞

−

∞� 

λnAnφn (82) 

∞

n=1 n=1 

The orthonormality property (i.e., the orthogonality property with 
� � � 

D 
φn

2 dV = 1) 

implies 
∞� � �
 � � �
∞�

2dV A2 
nAnAm φnφmdV (83)
v
 =
 =


D D=1 =1 =1 n m n

∞∞∞

and, from (82), 

� � �
 � � �

λnAnAm φnφmdV = λn

2vdV A2 
n (84)
v∇
 −
 −
=


D m=1 n=1 D n=1 

Substituting (84) into (81) gives 

� � � � � � 

D 

∇v · ∇vdV
 = − 
D 

v∇ 
∞

2vdV = 
� 

λnAn 
2 (85)


n=1 

Substituting (83) and (85) into (80) gives 

� � � 
D 
∇v · ∇vdV 

�
∞ 

n=1 λnA
2 
nR (v) = � � � 

v2dV 
= �

∞ A2 
D n=1 n 

We assume the eigenfunctions are arranged in increasing order. In particular, λn ≥ λ1. 

Thus �
∞ λ1A

2 
�

∞ A2


R (v) ≥ n=1 n = λ1 
n=1 n = λ1.
�

∞ A2 
�

∞ A2 
n=1 n n=1 n 

If v is an eigenfunction with eigenvalue λ1, then 

λ1A
2
1R (v) = = λ1

A2 
1 

If v is not an eigenfunction corresponding to λ1, then there exists an n > 1 such that 

λn > λ1 and An = 0, so that R (v) > λ1. � 
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� �

�

� 

Theorem If two domains D� and D in R2 satisfy 

D   D� i.e., D ⊂ D� but D = D, 

then the smallest eigenvalues of the Sturm-Liouville problems on D and D� , λ1 and 

λ̂1, respectively, satisfy 

λ�1 < λ1 

In other words, the domain D� that contains the sub-domain D is associated with a 

smaller eigenvalue. 

Proof: Note that the Sturm-Liouville problems are 

∇ 2 v + λv = 0, (x, y) ∈ D 

v = 0, (x, y) ∈ ∂D 

∇ 2 �v + λ��v = 0, (x, y) ∈ D�

v = 0, (x, y) ∈ ∂D�

Let v1 be the eigenfunction corresponding to λ1 on D. Then, as we have proven 

before, 

λ1 = R (v1) , (86) 

where R (v) is the Rayleigh Quotient. Extend the function v1 continuously from D 

to D� to obtain a function v̂1 on D� which satisfies 

v1 (x, y) , (x, y) ∈ D 
v̂1 = 

0 (x, y) ∈ � (x, y) /D, ∈ D 

The extension is continuous, since v1 is zero on the boundary of D. Applying the 

previous theorem to the region D� and function v̂1 (which satisfies all the requirements 

of the theorem) gives 

λ̂1 ≤ R (v̂1) . 

Equality happens only if v̂1 is the eigenfunction corresponding to λ̂1. 

Useful fact [stated without proof]: the eigenfunction(s) corresponding to the 

smallest eigenvalue λ̂1 on D� are nonzero in the interior of D� . 

From the useful fact, v̂1 cannot be an eigenfunction corresponding to λ̂1 on D� , 

since it is zero in the interior of D� (outside D). Thus, as the previous theorem states, 

λ̂1 < R (v̂1) . (87) 
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� 

Since v̂1 = 0 outside D, the integrals over D� in the Rayleigh quotient reduce to 

integrals over D, where v̂1 = v1, and hence 

R (v̂1) = R (v1) . (88) 

Combining (86), (87), and (88) gives the result, 

λ̂1 < λ1. 

Example: Consider two regions, D1 is a rectangle of length x0, height y0 and D2 

is a circle of radius R. Recall that the smallest eigenvalue on the rectangle D1 is 
� 

1 1 
� 

+λ11 = π2
2 2x0 y0 

The smallest eigenvalue on the circle of radius 1 is λ01 = J0
2 
,1 where the first zero 

of the Bessel function J0 (s) of the first kind is J0,1 = 2.4048. Since 
√

λ multiplied 

r in the Bessel function, then for a circle of radius R, we’d rescale by the change of 

variable r̂ = r/R, so that Jm 

�√
λr
� 

= Jm 

�� 

R
λ 
2 

� 
r̂ where r̂ goes from 0 to 1. Thus 

on the circle of radius R, the smallest eigenvalue is 

�
J0,1 

�2 

, J0,1 = 2.4048.λ01 = 
R 

Suppose the rectangle is actually a square of side length 2R. Then 

π2 4.934 
�

J0,1 
�2 

5.7831 
λ11 = = , λ01 = = 

2R2 R2 R R2 

Thus, λ11 < λ01, which confirms the second theorem, since D2 D1, i.e., the circle ⊂
is contained inside the square. 

Now consider the function 
� r �2 

v (r) = 1 − 
R 

You can show that �
dv 
�2 

∇v · ∇v = 
dr 

, 

and � � 
D2 

∇v · ∇vdA 
� π � R �dv 

�2 
rdrdθ 6


R (v) = � � 
D2 

v2dA 
= −� π 

−

π

π 

0 � 
0 
R

dr 

v2rdrdθ 
= 

R2 
> λ01


This confirms the first theorem, since v (r) is smooth on D2, v (R) = 0 (zero on the 

boundary of D2), and v is nonzero in the interior. 
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13.1 Faber-Kahn inequality 

Thinking about the heat problem on a 2D plate, what shape of plate will cool the 

slowest? It is a geometrical fact that of all shapes of equal area, the circle (disc) has 

the smallest circumference. Thus, on physical grounds, we expect the circle to cool 

the slowest. Faber and Kahn proved this in the 1920s. 

Faber-Kahn inequality For all domains D ⊂ R2 of equal area, the disc has the 

smallest first eigenvalue λ1. 

Example. Consider the circle of radius 1 and the square of side length 
√

π. Then 

both the square and circle have the same area. The first eigenvalues for the square 

and circle are, respectively, 
� 

1 1
� 

λ1SQ = π2 = 2π = 6.28, λ1CIRC = (J0,1)
2 = 5.7831 + 

π π 

and hence λ1SQ > λ1CIRC , as the Faber-Kahn inequality states. 

14 Nodal lines 

Consider the Sturm-Liouville problem 

v + λv = 0, (89) ∇ 2 x ∈ D 

v = 0, x ∈ ∂D 

Nodal lines are the curves where the eigenfunctions of the Sturm-Liouville problem 

are zero. For the solution to the vibrating membrane problem, the normal modes 

unm (x, y, t) are zero on the nodal lines, for all time. These are like nodes on the 1D 

string. Here we consider the nodal lines for the square and the disc (circle). 

14.1 Nodal lines for the square 

For the square, the eigenfunctions and eigenvalues are a special case of those we found 

for the rectangle, with side length x0 = y0 = a, 

vmn (x, y) = sin 
�mπx � 

sin 
�mπy � 

, λmn = 
π

2

2 �
m 2 + n 2

� 
, n,m = 1, 2, 3, ... 

a a a

The nodal lines are the lines on which vmn (x, y) = 0, and are 

ka la 
x = , y = , 1 ≤ k ≤ m − 1, 1 ≤ l ≤ n − 1 

m n 

for m,n ≥ 2. Note that v11 (x, y) has no nodal lines on the interior - it is only zero 

on boundary ∂D. Since λmn = λnm, then the function fnm = Avmn + Bvnm is also an 

33




eigenfunction with eigenvalue λmn, for any constants A, B. The nodal lines for fnm 

can be quite interesting. 

Examples: we draw the nodal lines on the interior and also the lines around the 

boundary, where vnm = 0. 

(i) m = 1, n = 1. �πx � 
sin 
�πy � 

v11 = sin 
a a 

This is positive on the interior and zero on the boundary. Thus the nodal lines are 

simply the square boundary ∂D. 

(ii) m = 1, n = 2. �πx � 
sin 

�
2πy 

� 

v12 = sin 
a a 

The nodal lines are the boundary ∂D and the horizontal line y = a/2. 

(iii) m = 1, n = 3 �πx �
�

3πy 
� 

v13 = sin sin 
a a 

The nodal lines are the boundary ∂D and the horizontal lines y = a/3, 2a/3. 

(iv) m = 3, n = 1 �
3πx 

� �πy � 
v31 = sin sin 

a a 

The nodal lines are the boundary ∂D and the vertical lines x = a/3, 2a/3. 

(v) Consider v13 v31. Since λ31 = λ13 = 10π2/a2, this is a solution to SL −
problem (89) on D with λ = λ13. To find the nodal lines, we use the identity 

sin 3θ = (sin θ)
�
3 − 4 sin2 θ

� 
to write 

�πx � 
sin 
�πy ��

3 − 4 sin2 
�πy �� 

v13 = sin 
a a a 

�πx � 
sin 
�πy ��

3 − 4 sin2 
�πx �� 

v31 = sin 
a a a �πx � 

sin 
�πy ��

sin2 
�πx � 

− sin2 
�πy �� 

v13 − v31 = 4 sin
a a a a 

The nodal lines are the boundary of the square, ∂D, and lines such that 

0 = sin2 
�πx � 

− sin2 
�πy � 

= 
�
sin 
�πx � 

− sin 
�πy ���

sin 
�πx � 

+ sin
�πy �� 

a a a a a a 

i.e., �πx � 
= sin 

� πy �
sin 

a 
±

a 

Thus 
πx πy 

= + kπ, any integer k. 
a 

±
a 
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Hence the nodal lines are 

y = ±x + ka 

for all integers k. We’re only concerned with the nodal lines that intersect the interior 

of the square plate: 

y = x, y = −x + a 

Thus the nodal lines of v13 − v31 are the sides and diagonals of the square. 

Let DT be the isosceles right triangle whose hypotenuse lies on the bottom hor­

izontal side of the square. The function v13 − v31 is zero on the boundary ∂DT , 

positive on the interior of DT , and is thus the eigenfunction corresponding to the first 

(smallest) eigenvalue λ = λ13 of the Sturm-Liouville problem (89) on the triangle DT . 

In this case, we found the eigenfunction without using separation of variables, which 

would have been complicated on the triangle. 

(vi) With v13, v31 given above, adding gives 

�πx � �πy �
�

3 �
sin2 

�πx � 
+ sin2 

�πy ��
� 

v13 + v31 = 4 sin
a 

sin 
a 2 

− 
a a 

The nodal lines for v13 + v31 are thus the square boundary and the closed nodal line 

defined by 
3 

sin2 
�πx � 

+ sin2 
�πy � 

= . 
a a 2 

Let Dc be the region contained within this closed nodal line. The function − (v13 + v31) 

is zero on the boundary ∂Dc, positive on the interior of Dc, and thus − (v13 + v31) is 

the eigenfunction corresponding to the first (smallest) eigenvalue λ13 of the Sturm-

Liouville problem (89) on Dc. 

(vii) Find the first eigenvalue on the right triangle 

DT2 = 
�

0 ≤ y ≤
√

3x, 0 ≤ x ≤ 1
� 

. 

Note that separation of variables is ugly, because you’d have to impose the BC 

�√
3x 
�

X (x) Y = 0 

We proceed by placing the triangle inside a rectangle of horizontal and vertical side 

lengths 1 and 
√

3, respectively. The sides of the rectangle coincide with the perpen­

dicular sides of the triangle. Thus, all eigenfunctions vmn for the rectangle are already 

zero on two sides of the triangle. However, any particular eigenfunction vmn will not 

be zero on the triangle’s hypotenuse, since all the nodal lines of vmn are horizontal 

or vertical. Thus we need to add multiple eigenfunctions. However, to satisfy the 

Sturm-Liouville problem, all the eigenfunctions must be associated with the same 
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eigenvalue. For the rectangle with side lengths 
√

3 and 1, the eigenvalues are given


by 
2 2 π2

�
m n

� �
3m 2 + n 2

�
+ =λmn = π2 

1 3 3 

We create a table of 3m2 + n2 and look for repeated values: 

n, m 1 2 3 4 

1 4 13 28 

2 7 16 31 

3 12 21 36 

4 19 28 43 

5 28 37 

The smallest repeated value of 3m2 + n2 is 28: 

λ31 = λ24 = λ15 = 28π2/3 

The linear combination of the corresponding eigenfunctions is itself an eigenfunction 

of the SL problem (89) on the rectangle D, 

v = Av31 + Bv24 + Cv15. 

We wish v to also be zero along the hypotenuse of DT2, and seek A, B, C which 

satisfy 

Av31 + Bv24 + Cv15 = 0 

on y = 
√

3x. If we can find such constants A, B, C then we have found an eigenfunc­

tion of the SL problem (89) on the triangle DT2. If this eigenfunction is positive on 

the interior of DT2 then we have also found the smallest eigenvalue (in this case λ31). 

If we cannot find such A, B, C, then we seek the next largest repeated value 

of 3m2 + n2 and continue as above. If we can find (A, B, C) such that v = 0 on 

y = 
√

3x, but v is zero on the interior of DT2, then λ31 is not the smallest eigenvalue 

and we must pursue another method of finding the smallest eigenvalue. The Rayleigh 

quotient can help us identify an upper bound. 

14.2 Nodal lines for the disc (circle) 

For the disc of radius 1, we found the eigenfunctions and eigenvalues to be 

vmnS = Jm (rjm,n) sin mθ, vmnC = Jm (rjm,n) cos mθ 
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with 

λmn = m,nπ2j2 , n,m = 1, 2, 3, ... 

The nodal lines are the lines on which vmnC = 0 or vmnS = 0. 

Examples. 

(i) m = 0, n = 1. 

v01 = J0 (rj0,1) 

The nodal lines are the boundary of the disc (circle of radius 1). 

(ii) m = 0, n = 2. 

v02 = J0 (rj0,2) 

The nodal lines are two concentric circles, one of radius r = 1, the other or radius 

r = J0,1/J0,2 < 1. 

(iii) m = 1 , n = 1 and sine. 

v11S = J0 (rj1,1) sin θ 

The nodal lines are the boundary (circle of radius 1) and the line θ = −π, 0, π 

(horizontal diameter). 

15 Steady-state temperature in a 3D cylinder 

Suppose a 3D cylinder of radius a and height L has temperature u (r, θ, z, t). We 

assume the axis of the cylinder is on the z-axis and (r, θ, z) are cylindrical coordinates. 

Initially, the temperature is u (r, θ, z, 0). The ends are kept at a temperature of u = 0 

and sides kept at u (a, θ, z, t) = g (θ, z). The steady-state temperature uE (r, θ, z) in 

the 3D cylinder is given by 

2 ∇ uE = 0, −π ≤ θ < π, 0 ≤ r ≤ a, 0 ≤ z ≤ L, (90) 

uE (r, θ, 0) = uE (r, θ, L) = 0, −π ≤ θ < π, 0 ≤ r ≤ a, (91) 

uE (a, θ, z) = g (θ, z) , −π ≤ θ < π, 0 ≤ z ≤ L. 

In cylindrical coordinates (r, θ, z), the Laplacian operator becomes 

1 ∂ 
� 

∂v 
� 

1 ∂2v ∂2v2 
2

∇ v = 
r ∂r 

r
∂r 

+ 
r ∂θ2 

+ 
∂z2 

We separate variables as 

v (r, θ, z) = R (r) H (θ) Z (z) 
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so that (90) becomes 

1 d 
� 

dR (r)
� 

1 d2H(θ) 1 d2Z (z) 
r + + = 0. 

rR (r) dr dr r2H(θ) dθ2 Z (z) dz2 

Rearranging gives 

1 d 
� 

dR (r)
� 

1 d2H(θ) 1 d2Z (z) 

rR (r) dr 
r

dr 
+ 

r2H(θ) dθ2 
= −

Z (z) dz2 
= λ (92) 

where λ is constant since the l.h.s. depends only on r, θ while the middle depends 

only on z. 

The function Z (z) satisfies 

d2Z 
+ λZ = 0 

dz2 

The BCs at z = 0, L imply 

0 = u (r, θ, 0) = R (r) H (θ) Z (0) 

0 = u (r, θ, L) = R (r) H (θ) Z (L) 

To obtain non-trivial solutions, we must have 

Z (0) = 0 = Z (L) . 

As we’ve shown many times before, the solution for Z (z) is, up to a multiplicative 

constant, �nπz � �nπ �2 
Zn (z) = sin , λn = , n = 1, 2, 3, ... 

L L


Multiplying Eq. (92) by r2 gives


r d 
� 

dR (r)
� 

2 1 d2H(θ) 

R (r) dr 
r

dr 
− λnr = −

H(θ) dθ2 
= µ (93) 

where µ is constant since the l.h.s. depends only on r and the middle only on θ. 

We assume g (θ, z) is smooth and 2π-periodic in θ. Hence 

H ′ (−π) = H ′ (π), H ′ (−π) = H ′ (π) 

We solved this problem above and found that µ = m2 for m = 0, 1, 2, ..., H0(θ) = const 

and 

Hm(θ) = Am cos mθ + Bm sin mθ, m = 1, 2, 3, ... 

Multiplying (93) by R (r) gives 

r 
d 
� 

r
dR (r)

� 

−
�
λnr 

2 + m 2
� 
R (r) = 0 

dr dr 
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This is the Modified Bessel Equation with linearly independent solutions Im 

�
r
√

λn 

� 

and Km 

�
r
√

λn 

� 
called the modified Bessel functions of order m of the first and second 

kinds, respectively. Thus 

Rmn (r) = c1mIm 

� 
r
�

λn 

� 
+ c2mKm 

� 
r
�

λn 

� 

Since the Im’s are regular (bounded) at r = 0, while the Km’s are singular (blow up), 

and since Rmn (r) must be bounded, we must have c2m = 0, or 

Rmn (r) = c1mIm 

� 
r
�

λn 

� 
= c1mIm 

�nπr � 

L 

Thus the general solution is, by combining constants, 

∞ ∞�� �nπr � �nπz � 
uE (r, θ, z) = Im sin [Amn cos (mθ) + Bm sin (mθ)] 

L L 
m=0 n=1 

In theory, we can now impose the condition u (a, θ, z) = g (θ, z) and find Amn, Bmn 

using orthogonality of sin, cos. 
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