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1 Motivation 

[Oct 26, 2005] 

Most of the methods discussed in this course: separation of variables, Fourier 

Series, Green’s functions (later) can only be applied to linear PDEs. However, the 

method of characteristics can be applied to a form of nonlinear PDE. 

1.1 Traffic flow 

Ref: Myint-U & Debnath §12.6 

Consider the idealized flow of traffic along a one-lane highway. Let ρ (x, t) be the 

traffic density at (x, t). The total number of cars in x1 ≤ x ≤ x2 at time t is 

x2 

N (t) = ρ (x, t) dx (1) 
x1 

Assume the number of cars is conserved, i.e. no exits. Then the rate of change of the 

number of cars in x1 ≤ x ≤ x2 is given by 

dN 
= rate in at x1 − rate out at x2

dt 
= ρ (x1, t) V (x1, t) − ρ (x2, t) V (x2, t) 

x2 ∂ 
= − (ρV ) dx (2) 

∂x x1 

where V (x, t) is the velocity of the cars at (x, t). Combining (1) and (2) gives


x2 ∂ρ ∂ 
+ (ρV ) dx = 0 

∂t ∂x x1 
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and since x1, x2 are arbitrary, the integrand must be zero at all x, 

∂ρ ∂ 
+ (ρV ) = 0 (3) 

∂t ∂x


We assume, for simplicity, that velocity V depends on density ρ, via


ρ 
V (ρ) = c 1 − 

ρmax 

where c = max velocity, ρ = ρmax indicates a traffic jam (V = 0 since everyone is 

stopped), ρ = 0 indicates open road and cars travel at c, the speed limit (yeah right). 

The PDE (3) becomes 
∂ρ 

∂t 
+ c 

( 

1 − 
2ρ 

ρmax 

) 
∂ρ 

∂x 
= 0 (4) 

We introduce the following normalized variables 

ρ 
u = , t̃ = ct 

ρmax 

into the PDE (4) to obtain (dropping tildes), 

ut + (1 − 2u) ux = 0 (5) 

The PDE (5) is called quasi-linear because it is linear in the derivatives of u. It 

is NOT linear in u (x, t), though, and this will lead to interesting outcomes. 

2 General first-order quasi-linear PDEs 

Ref: Guenther & Lee §2.1, Myint-U & Debnath §12.1, 12.2 

The general form of quasi-linear PDEs is 

∂u ∂u 
A + B = C (6) 

∂x ∂t 

where A, B, C are functions of u, x, t. The initial condition u (x, 0) is specified at 

t = 0, 

u (x, 0) = f (x) (7) 

We will convert the PDE to a sequence of ODEs, drastically simplifying its solu­

tion. This general technique is known as the method of characteristics and is useful 

for finding analytic and numerical solutions. To solve the PDE (6), we note that 

(A,B,C) · (ux, ut,−1) = 0. (8) 
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Recall from vector calculus that the normal to the surface f (x, y, z) = 0 is ∇f . 

To make the analogy here, t replaces y, f (x, t, z) = u (x, t)−z and ∇f = (ut, ux,−1). 

Thus, a plot of z = u (x, t) gives the surface f (x, t, z) = 0. The vector (ux, ut,−1) is 

the normal to the solution surface z = u (x, t). From (8), the vector (A,B,C) is the 

tangent to this solution surface. 

The IC u (x, 0) = f (x) is a curve in the u − x plane. For any point on the initial 

curve, we follow the vector (A,B,C) to generate a curve on the solution surface, 

called a characteristic curve of the PDE. Once we find all the characteristic curves, 

we have a complete description of the solution u (x, t). 

2.1 Method of characteristics 

We represent the characteristic curves parametrically, 

x = x (r; s) , t = t (r; s) , u = u (r; s) , 

where s labels where we start on the initial curve (i.e. the initial value of x at t = 0). 

The parameter r tells us how far along the characteristic curve. Thus (x, t, u) are now 

thought of as trajectories parametrized by r and s. The semi-colon indicates that s 

is a parameter to label different characteristic curves, while r governs the evolution 

of the solution along a particular characteristic. 

From the PDE (8), at each point (x, t), a particular tangent vector to the solution 

surface z = u (x, t) is 

(A (x, t, u) , B (x, t, u) , C (x, t, u)) . 

Given any curve (x (r; s) , t (r; s) , u (r; s)) parametrized by r (s acts as a label only), 

the tangent vector is 
∂x ∂t ∂u 

, , . 
∂r ∂r ∂r 

For a general curve on the surface z = u (x, t), the tangent vector (A,B,C) will 

be different than the tangent vecto (xr, tr, ur). However, we choose our curves 

(x (r; s) , t (r; s) , u (r; s)) so that they have tangents equal to (A,B,C), 

∂x ∂t ∂u 
= A, = B, = C (9) 

∂r ∂r ∂r 

where (A,B,C) depend on (x, t, u), in general. We have written partial derivatives 

to denote differentiation with respect to r, since x, t, u are functions of both r and 

s. However, since only derivatives in r are present in (9), these equations are ODEs! 

This has greatly simplified our solution method: we have reduced the solution of a 

PDE to solving a sequence of ODEs. 
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Figure 1: Plot of f(x). 

The ODEs (9) in conjunction with some initial conditions specified at r = 0. We 

are free to choose the value of r at t = 0; for simplicity we take r = 0 at t = 0. Thus 

t (0; s) = 0. Since x changes with r, we choose s to denote the initial value of x (r; s) 

along the x-axis (when t = 0) in the space-time domain. Thus the initial values (at 

r = 0) are 

x (0; s) = s, t (0; s) = 0,	 u (0; s) = f (s) . (10) 

3 Example problem 

[Oct 28, 2005] 

Consider the following quasi-linear PDE, 

∂u ∂u 
+ (1 + cu) = 0, u (x, 0) = f (x)

∂t ∂x 

where c = ±1 and the initial condition f (x) is 

 
 1, x < −1 
 
 
1, |x| > 1 2 + x, −1 ≤ x ≤ 0 

f (x) =	 = 
2 − |x| , |x| ≤ 1  2 − x,	 0 < x ≤ 1 

 
 
 

1, x > 1 

The function f (x) is sketched in Figure 1. To find the parametric solution, we can 

write the PDE as 
( ) 

∂u ∂u 
(1, 1 + cu, 0) · , ,−1 = 0 

∂t ∂x

Thus the parametric solution is defined by the ODEs


dt dx	 du 
= 1, = 1 + cu, = 0 

dr dr	 dr 
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with initial conditions at r = 0, 

t = 0, x = s, u = u (x, 0) = u (s, 0) = f (s) . 

Integrating the ODEs and imposing the ICs gives 

t (r; s) = r 

u (r; s) = f (s) 

x (r; s) = (1 + cf (s)) r + s = (1 + cf (s)) t + s 

3.1 Validity of solution and break-down (shock formation) 

To find the time ts and position xs when and where a shock first forms, we find the 

Jacobian: 

∂ (x, t) xr xs
J = = det 

∂ (r, s) tr ts 

∂x ∂t ∂x ∂t 
= − = 0 − (cf ′ (s) r + 1) = − (cf ′ (s) t + 1) 

∂r ∂s ∂s ∂r 

Shocks occur (the solution breaks down) where J = 0, i.e. where 

1 
t = − 

cf ′ (s) 

The first shock occurs at 
( ) 

1 
ts = min − 

cf ′ (s) 

In this course, we will not consider what happens after the shock. You can find more 

about this in §12.9 of Myint-U & Debnath. We now take cases for c = ±1. 

For c = 1, since min f ′ (s) = −1, we have 

1 
ts = − = 1 

min f ′ (s) 

Any of the characteristics where f ′ (s) = min f ′ (s) = −1 can be used to find the 

location of the shock at ts = 1. For e.g., with s = 1/2, the location of the shock at 

ts = 1 is 
( ( )) ( ( )) 

1 1 1 1 
xs = 1 + f 1 + = 1 + 2 − 1 + = 3. 

2 2 2 2 

Any other value of s where f ′ (s) = −1 will give the same xs. 
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For c = −1, since max f ′ (s) = 1, we have 

1 
ts = = 1 

max f ′ (s) 

Any of the characteristics where f ′ (s) = max f ′ (s) = 1 can be used to find the 

location of the shock at ts = 1. For e.g., with s = −1/2, the location of the shock at 

ts = 1 is 
( ( )) ( ( )) 

1 1 1 1 
xs = 1 − f − 1 − = 1 − 2 − 1 − = −1. 

2 2 2 2 

Any other value of s where f ′ (s) = 1 will give the same xs. 

3.2 Solution Method (plotting u(x,t)) 

Since r = t, we can rewrite the solution as being parametrized by time t and the 

marker s of the initial value of x: 

x (t; s) = (1 + cf (s)) t + s, u (; s) = f (s) 

We have written u (; s) to make clear that u depends only on the parameter s. In 

other words, u is constant along characteristics! 

To solve for the density u at a fixed time t = t0, we (1) choose values for s, (2) 

compute x (t0; s), u (; s) at these s values and (3) plot u (; s) vs. x (t0; s). Since f (s) 

is piecewise linear in s (i.e. composed of lines), x is therefore piecewise linear in s, 

and hence at any given time, u = f (s) is piecewise linear in x. Thus, to find the 

solution, we just need to follow the positions of the intersections of the lines in f (s) 

(labeled by s = −1, 0, 1) in time. We then plot the positions of these intersections 

along with their corresponding u value in the u vs. x plane and connect the dots to 

obtain a plot of u (x, t). Note that for c = 1, the s = −1, 0, 1 characteristics are given 

by 

s = −1 : x = (1 + cf (−1)) t − 1 = 2t − 1 

s = 0 : x = (1 + cf (0)) t + 0 = 3t 

s = 1 : x = (1 + cf (1)) t + 1 = 2t + 1 

These are plotted in Figure 2. The following tables are useful as a plotting aid: 

s = −1 0 1 

u = 1 2 1 

x = 0 3 
2 2 

1 
t = 

2 
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s = −1 0 1 

u = 1 2 1 

x = 1 3 3 

t = ts = 1 

A plot of u (x, 1/2) is made by plotting the three points (x, u) from the table for 

t = 1/2 and connecting the dots (see middle plot in Figure 3). Similarly, u (x, ts) = 

u (x, 1) is plotted in the last plot of Figure 3. 

Repeating the above steps for c = −1, the s = −1, 0, 1 characteristics are given 

by 

s = −1 : x = (1 − f (−1)) t − 1 = −1 

s = 0 : x = (1 − f (0)) t + 0 = −t 

s = 1 : x = (1 − f (1)) t + 1 = 1 

These are plotted in Figure 4. We then construct the tables: 

s = −1 0 1 

u = 1 2 1 

x = -1 −1 
2 1 

1 
t = 

2 

s = −1 0 1 

u = 1 2 1 

x = −1 −1 1 

t = ts = 1 

As before, plots of u (x, 1/2) and u (x, 1) are made by plotting the three points (x, u) 

from the tables and connecting the dots. See middle and bottom plots in Figure 

5. Note that for c = 1 the wave front steepened, while for c = −1 the wave tail 

steepened. This is easy to understand by noting how the speed changes relative to 

the height u of the wave. When c = 1, the local wave speed 1 + u is larger for higher 

parts of the wave. Hence the crest catches up with the trough ahead of it, and the 

shock forms on the front of the wave. When c = −1, the local wave speed 1 − u is 

larger for higher parts of the wave; hence the tail catches up with the crest, and the 

shock forms on the back of the wave. 

4 Solution to traffic flow problem 

[Oct 31, 2005] 

The traffic flow PDE (5) is 

ut + (1 − 2u) ux = 0 (11) 

7 



1 

u(
x,

1)
 

u(
x,

0.
5)

 
u(

x,
0)

	
t 0.5 

0 
−3 −2 −1	 0 1 2


x


Figure 2: Plot of characteristics for c = 1. 
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Figure 3: Plot of u(x, t0) with c = 1 for t0 = 0, 0.5 and 1. 
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Figure 4: Plot of characteristics with c = −1. 
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Figure 5: Plot of u(x, t0) with c = −1 for t0 = 0, 0.5 and 1. 
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and has form (6) with (A,B,C) = (1 − 2u, 1, 0). The characteristic curves satisfy (9) 

and (10) 

∂x 

∂r 
= 1 − 2u, x (0) = s, 

∂t 

∂r 
= 1, t (0) = 0, 

∂u 

∂r 
= 0, u (0) = f (s) . 

Integrating gives the parametric equations 

t = r + c1, u = c2, x = (1 − 2u) r + c3 = (1 − 2c2) r + c3 

Imposing the ICs gives c1 = 0, c2 = f (s), c3 = s, so that 

t = r, u = f (s) , x = (1 − 2f (s)) r + s = (1 − 2f (s)) t + s (12) 

We can now write 

x (t; s) = (1 − 2f (s)) t + s, u (; s) = f (s) 

Again, the traffic density u is constant along characteristics. Note that this would 

change if, for example, there was a source/sink term in the traffic flow equation (11), 

i.e. 

ut + (1 − 2u) ux = h(x, t, u) 

where h(x, t, u) models the traffic loss / gain to exists and on-ramps at various posi­

tions. 

4.1 Example : Light traffic heading into heavier traffic 

Consider light traffic heading into heavy traffic, and model the initial density as 
 
 α, x ≤ 0 
 

u (x, 0) = f (x) = 3

4 − α x + α, 0 ≤ x ≤ 1 (13) 
 
 3 , x ≥ 1

4 

where 0 ≤ α ≤ 3/4. The lightness of traffic is parametrized by α. We consider the 

case of light traffic α = 1/6 and moderate traffic α = 1/3. 

From (12), the characteristics are [DRAW] 

 
 (1 − 2α) t + s, s ≤ 0 
 

x = (1 − 2α − 2 (3/4 − α) s) t + s, 0 ≤ s ≤ 1 
 
 

−t/2 + s, s ≥ 1 
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For α = 1/6, we have 

 
 2 t + s, s ≤ 0 
 3 

2 7x = − s t + s, 0 ≤ s ≤ 1
3 6 

 
 

−1 t + s, s ≥ 1
2 

For α = 1/3, we have 

 
 1 t + s, s ≤ 0 
 3 

x = 1 5 s t + s, 0 ≤ s ≤ 1−
3 6 

 
 

−1 t + s, s ≥ 1 
2 

Again, for fixed times t = t0, plotting the solution amounts to choosing an appropriate 

range of values for s, in this case −2 ≤ s ≤ 2 would suffice, and then plotting the 

resulting points u (t0, s) versus x (t0, s) in the xu-plane. 

The transformation (r, s) → (x, t) is non-invertible if the determinant of the Ja­

cobian matrix is zero, 

∂ (x, t) 
= det 

xr xs 
= det 

1 − 2f (s) −2f ′ (s) r + 1 
= 2f ′ (s) r − 1 = 0. 

∂ (r, s) tr ts 1 0 

(14) 

Solving for r and noting that t = r gives the time when the determinant becomes 

zero, 
1 

t = r = . (15) 
2f ′ (s) 

Since times in this problem are positive t > 0, then shocks occur if f ′ (s) > 0 for some 

s. The first such time where shocks occur is 

1 
tshock = . (16) 

2 max {f ′ (s)} 

In the example above, the time when a shock first occurs is given by substituting 

(13) into (16), 
1 1 

tshock =
2 max {f ′ (s)} 

=
2 
( 

3 
) . 

− α 
4 

Thus, lighter traffic (smaller α) leads to shocks sooner! The position of the shock at 

tshock is given by 
1 − α 

xshock = (1 − 2α) tshock = 
3

2 . 
− α 

4 
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