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1 Motivation

[Oct 26, 2005]
Most of the methods discussed in this course: separation of variables, Fourier
Series, Green’s functions (later) can only be applied to linear PDEs. However, the

method of characteristics can be applied to a form of nonlinear PDE.

1.1 Traffic flow

Ref: Myint-U & Debnath §12.6
Consider the idealized flow of traffic along a one-lane highway. Let p (x,t) be the

traffic density at (x,t). The total number of cars in x; < z < x5 at time ¢ is

N (1) = / o (2.1) da (1)

Assume the number of cars is conserved, i.e. no exits. Then the rate of change of the

number of cars in r; < x < x5 is given by

dN .
T = rate in at x1 — rate out at xs
= p(z1,t) V(21,t) — p(a2,t) V (z2,1)
T2 a
= — — d 2
. (pV)dx (2)
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where V' (z,t) is the velocity of the cars at (x,¢). Combining (1) and (2) gives

2 0p 0 B
/xl (E—Fa—x(p‘/))dx—o
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and since 1, xo are arbitrary, the integrand must be zero at all x,

dp 0 B
2% 9 (PV)=0 (3)

We assume, for simplicity, that velocity V' depends on density p, via

oc(i-2)

where ¢ = max velocity, p = pmax indicates a traffic jam (V' = 0 since everyone is

stopped), p = 0 indicates open road and cars travel at ¢, the speed limit (yeah right).

The PDE (3) becomes
dp 2p \ Op
E‘FC(]. pmax) 8_51,‘_0 (4)

We introduce the following normalized variables

U = P , t=ct

Pmax

into the PDE (4) to obtain (dropping tildes),
up+ (1 —2u)u, =0 (5)

The PDE (5) is called quasi-linear because it is linear in the derivatives of u. It

is NOT linear in u (z,t), though, and this will lead to interesting outcomes.

2 General first-order quasi-linear PDEs

Ref: Guenther & Lee §2.1, Myint-U & Debnath §12.1, 12.2

The general form of quasi-linear PDEs is

ou ou

where A, B, C are functions of u, x, t. The initial condition u (z,0) is specified at
t=0,
u(z,0) = f(z) (7)

We will convert the PDE to a sequence of ODEs, drastically simplifying its solu-
tion. This general technique is known as the method of characteristics and is useful

for finding analytic and numerical solutions. To solve the PDE (6), we note that

(A, B,C) - (ug,ug, —1) = 0. (8)



Recall from vector calculus that the normal to the surface f (z,y,z) = 01is Vf.
To make the analogy here, ¢ replaces y, f (z,t,2) = u(x,t)—z and Vf = (uy, uy, —1).
Thus, a plot of z = u (x,t) gives the surface f (z,t,2) = 0. The vector (ug,u;, —1) is
the normal to the solution surface z = u (z,t). From (8), the vector (A, B, () is the
tangent to this solution surface.

The IC u (x,0) = f (z) is a curve in the u — x plane. For any point on the initial
curve, we follow the vector (A, B,C) to generate a curve on the solution surface,

called a characteristic curve of the PDE. Once we find all the characteristic curves,

we have a complete description of the solution u (x,t).

2.1 Method of characteristics

We represent the characteristic curves parametrically,
v=x(r;s), t=t(rs), u=u(rs),

where s labels where we start on the initial curve (i.e. the initial value of z at t = 0).
The parameter r tells us how far along the characteristic curve. Thus (z,t,u) are now
thought of as trajectories parametrized by r and s. The semi-colon indicates that s
is a parameter to label different characteristic curves, while r governs the evolution
of the solution along a particular characteristic.

From the PDE (8), at each point (z,t), a particular tangent vector to the solution

surface z = u (x,t) is
(A(z,t,u), B(z,t,u),C (z,t,u)).
Given any curve (z (r;s),t(r;s),u(r;s)) parametrized by r (s acts as a label only),
or’or’ or )’

For a general curve on the surface z = w(x,t), the tangent vector (A, B,C) will

the tangent vector is

be different than the tangent vecto (x,,t.,u,). However, we choose our curves
(x (r;s),t(r;s),u(r;s)) so that they have tangents equal to (A, B, C),

ox ot ou

o = A, i B, o = C 9)
where (A, B,C) depend on (x,t,u), in general. We have written partial derivatives
to denote differentiation with respect to r, since x, ¢, u are functions of both r and
s. However, since only derivatives in r are present in (9), these equations are ODEs!
This has greatly simplified our solution method: we have reduced the solution of a

PDE to solving a sequence of ODEs.
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Figure 1: Plot of f(x).

The ODEs (9) in conjunction with some initial conditions specified at r = 0. We
are free to choose the value of r at ¢t = 0; for simplicity we take r = 0 at £ = 0. Thus
t (0;s) = 0. Since x changes with 7, we choose s to denote the initial value of  (r; s)
along the z-axis (when ¢ = 0) in the space-time domain. Thus the initial values (at
r=0) are

z(0;8) = s, t(0;s) =0, u(0;8) = f(s). (10)

3 Example problem

[Oct 28, 2005]
Consider the following quasi-linear PDE,

o 0
8—?+(1+cu)a—?;=0, u(z,0)=f(z)

where ¢ = £1 and the initial condition f () is

1, r<—1
1, lx| > 1 242, —1<2<0
2—lz|, |z] <1 2—z, O0<zx<1
1, x>1

The function f (z) is sketched in Figure 1. To find the parametric solution, we can

write the PDE as Du
u Ou
1.1 0)-(—,—.,—1] =0
(1, 1+ cu,0) (at’ax’ )

Thus the parametric solution is defined by the ODEs

dt dx du
dr ’ dr + e, dr 0



with initial conditions at r = 0,
t=0, T =s, u=1u(z,0)=u(s,0)=f(s).
Integrating the ODEs and imposing the ICs gives
t(r; r
u(ris) = [f(s)
x(r;s) = (I+ef(s)r+s=0+cf(s)t+s

3.1 Validity of solution and break-down (shock formation)

To find the time ¢, and position z; when and where a shock first forms, we find the

B 8(x,t)_ Ty Ts
s = 8(r7s>_det<tr ts>
Ox Ot 8m8t_

= Eg—gg—0—(cf/(s)7“—|—1):—(cf/(s)t—i-l)

Jacobian:

Shocks occur (the solution breaks down) where J = 0, i.e. where

The first shock occurs at

In this course, we will not consider what happens after the shock. You can find more
about this in §12.9 of Myint-U & Debnath. We now take cases for ¢ = +1.

For ¢ = 1, since min [’ (s) = —1, we have
1
= =1
min [’ (s)
Any of the characteristics where f’(s) = min f’(s) = —1 can be used to find the
location of the shock at ¢, = 1. For e.g., with s = 1/2, the location of the shock at
ts=11s
1 1 1 1
e (1 (3) a0 om3)Jres -

Any other value of s where f’(s) = —1 will give the same .



For ¢ = —1, since max f’ (s) = 1, we have

1
t=——— =1
max [’ (s)
Any of the characteristics where f'(s) = max f'(s) = 1 can be used to find the
location of the shock at t; = 1. For e.g., with s = —1/2, the location of the shock at

R A

Any other value of s where f’(s) =1 will give the same x;.

3.2 Solution Method (plotting u(x,t))

Since r = t, we can rewrite the solution as being parametrized by time ¢ and the

marker s of the initial value of z:

v(ts) =1 +cf(s)t+s, — ulis)=f(s)

We have written u (;s) to make clear that u depends only on the parameter s. In
other words, u is constant along characteristics!

To solve for the density u at a fixed time ¢ = to, we (1) choose values for s, (2)
compute x (to; s), u(;s) at these s values and (3) plot u (;s) vs. x (to; s). Since f (s)
is piecewise linear in s (i.e. composed of lines), x is therefore piecewise linear in s,
and hence at any given time, u = f (s) is piecewise linear in x. Thus, to find the
solution, we just need to follow the positions of the intersections of the lines in f (s)
(labeled by s = —1,0,1) in time. We then plot the positions of these intersections
along with their corresponding u value in the u vs. x plane and connect the dots to
obtain a plot of u (z,t). Note that for ¢ = 1, the s = —1, 0, 1 characteristics are given
by

s = —lixa=N+cf(-1)t—-1=2t—-1
s = 0:x=(1+cf(0)t+0=23t
s = lix=(N+cf())t+1=2t+1

These are plotted in Figure 2. The following tables are useful as a plotting aid:

s= | —1 1

N | O

| —

|

o
I[N

[\




—110]1
t=t,=1 u=|1 211
=1 313

A plot of u(x,1/2) is made by plotting the three points (x,u) from the table for
t = 1/2 and connecting the dots (see middle plot in Figure 3). Similarly, u (z,ts) =
u (z,1) is plotted in the last plot of Figure 3.

Repeating the above steps for ¢ = —1, the s = —1, 0, 1 characteristics are given
by

s = —l:x=(1—-f(-1)t—-1=-1
s = 0:x=(1—-f(0)t+0=—t
s = l:x=(1—-fA)t+1=1

These are plotted in Figure 4. We then construct the tables:

s=|-11]0 1

t=— =11 2 1
5 u

r=|-1 |—-3|1

s=|-11]0 1

t=t, =1 u=11 2 1

r=|—-1|-1]1

As before, plots of u (z,1/2) and u (x,1) are made by plotting the three points (z, u)
from the tables and connecting the dots. See middle and bottom plots in Figure
5. Note that for ¢ = 1 the wave front steepened, while for ¢ = —1 the wave tail
steepened. This is easy to understand by noting how the speed changes relative to
the height u of the wave. When ¢ = 1, the local wave speed 1 + u is larger for higher
parts of the wave. Hence the crest catches up with the trough ahead of it, and the
shock forms on the front of the wave. When ¢ = —1, the local wave speed 1 — u is
larger for higher parts of the wave; hence the tail catches up with the crest, and the

shock forms on the back of the wave.

4 Solution to traffic flow problem

[Oct 31, 2005]
The traffic flow PDE (5) is

up+ (1 —2u)u, =0 (11)
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Figure 2: Plot of characteristics for ¢ = 1.
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Figure 3: Plot of u(z,t) with ¢ = 1 for ¢, =0, 0.5 and 1.
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Figure 4: Plot of characteristics with ¢ = —1.
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Figure 5: Plot of u(z,ty) with ¢ = —1 for t, = 0, 0.5 and 1.



and has form (6) with (A, B,C) = (1 — 2u, 1,0). The characteristic curves satisfy (9)
and (10)

ox

= 1 — 2u, z(0) = s,
ot

5 - 17 t(O)—O,

ou

B0 w=f(

Integrating gives the parametric equations
t=r+c, u = co, r=(1=-2u)r4+c3=(1—2c)r+cs
Imposing the ICs gives ¢; =0, co = f (s), ¢3 = s, so that
t=r, u=f(s), r=0=-2f(s))r+s=(1—-2f(s))t+s (12)
We can now write
z(t;s) =1 =2f(s))t+s,  u(;s)=f(s)

Again, the traffic density u is constant along characteristics. Note that this would
change if, for example, there was a source/sink term in the traffic flow equation (11),
ie.

w4 (1 —2u) uy = h(x, t,u)
where h(z,t,u) models the traffic loss / gain to exists and on-ramps at various posi-

tions.

4.1 Example : Light traffic heading into heavier traffic

Consider light traffic heading into heavy traffic, and model the initial density as

Q, <0
u(z,0)=fx)=q¢ C-—a)z+a, 0<z<1 (13)
%, x>1

where 0 < a < 3/4. The lightness of traffic is parametrized by «. We consider the
case of light traffic @ = 1/6 and moderate traffic « = 1/3.
From (12), the characteristics are [DRAW]|

(1 —-2a)t+s, <0
r=<¢ (1-2a—-23/4—-—a)s)t+s, 0<s<1
—t/2 + s, s>1
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For a = 1/6, we have

§t+s, s<0
r={ G-L)t+s 0<a<]
—%t—l—s, s>1
For a = 1/3, we have
st + s, s<0
z=19q (3-g8)t+s, 0<s<1
—5t+s, s>1

Again, for fixed times t = tg, plotting the solution amounts to choosing an appropriate
range of values for s, in this case —2 < s < 2 would suffice, and then plotting the
resulting points u (to, s) versus x (to, s) in the zu-plane.

The transformation (r,s) — (z,t) is non-invertible if the determinant of the Ja-

cobian matrix is zero,

0(x,1) :det<$r s ) :det<1_21f(s) 2 (s)r+1 ) =2f'(s)r—1=0.

d(r,s)

0

T S
(14)
Solving for r and noting that ¢ = r gives the time when the determinant becomes

Z€eT0,

1
- 2f/(s)

Since times in this problem are positive ¢ > 0, then shocks occur if f'(s) > 0 for some

t=r

. (15)

s. The first such time where shocks occur is

1

tshock = m- (16)

In the example above, the time when a shock first occurs is given by substituting

(13) into (16),
1 1

shock = 2max {f" (s)} "9 (2-a)

Thus, lighter traffic (smaller «) leads to shocks sooner! The position of the shock at

tshoek 1S given by

N |

Lshock = (1 - 2@) tshock =

e
|
o
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